Esempio n. 1
0
    def __init__(self, config, usegpu):
        super(Pipeline, self).__init__()

        self.encoder_list = []
        self.task_name = config.get("data", "type_of_label").replace(" ", "").split(",")
        self.features = config.getint("net", "fc1_feature")
        for a in range(0, len(self.task_name)):
            self.encoder_list.append(CNNEncoder(config, usegpu))
        self.encoder_list = nn.ModuleList(self.encoder_list)

        self.out_fc = []
        for a in range(0, len(self.task_name)):
            self.out_fc.append(nn.Linear(self.features, get_num_classes(self.task_name[a])))
        self.out_fc = nn.ModuleList(self.out_fc)

        self.mix_fc = []
        for a in range(0, len(self.task_name)):
            mix_fc = []
            for b in range(0, len(self.task_name)):
                mix_fc.append(nn.Linear(get_num_classes(self.task_name[a]), self.features))
            mix_fc = nn.ModuleList(mix_fc)
            self.mix_fc.append(mix_fc)
        self.mix_fc = nn.ModuleList(self.mix_fc)

        self.combine_fc = []
        for a in range(0, len(self.task_name)):
            self.combine_fc.append(nn.Linear(self.features, self.features))
        self.combine_fc = nn.ModuleList(self.combine_fc)

        self.dropout = nn.Dropout(config.getfloat("train", "dropout"))
        self.softmax = nn.Softmax()
Esempio n. 2
0
def analyze_time(data, config):
    res = torch.from_numpy(np.zeros(get_num_classes("time")))

    opt = get_time_id(data, config)

    res[opt] = 1
    return res
Esempio n. 3
0
def analyze_law(data, config):
    res = torch.from_numpy(np.zeros(get_num_classes("law")))
    for x in data:
        y = (x[0], x[1])
        if y in law_dict.keys():
            res[law_dict[y]] = 1
    return res
Esempio n. 4
0
    def __init__(self, config, usegpu):
        super(NNFactArt, self).__init__()

        self.data_size = config.getint("data", "vec_size")
        self.hidden_dim = config.getint("net", "hidden_size")
        self.top_k = config.getint("data", "top_k")
        self.ufs = torch.ones(1, self.hidden_dim)
        # self.ufs = torch.randn(1, self.hidden_dim)
        self.ufs = torch.cat([self.ufs for i in range(config.getint("data", "batch_size"))], dim=0)
        self.ufw = torch.ones(1, self.hidden_dim)
        # self.ufw = torch.randn(1, self.hidden_dim)
        self.ufw = torch.cat(
            [self.ufw for i in range(config.getint("data", "batch_size") * config.getint("data", "sentence_num"))],
            dim=0)
        if (usegpu):
            self.ufs = torch.autograd.Variable(self.ufs).cuda()
            self.ufw = torch.autograd.Variable(self.ufw).cuda()
        else:
            self.ufs = torch.autograd.Variable(self.ufs)
            self.ufw = torch.autograd.Variable(self.ufw)

        self.gru_sentence_f = nn.GRU(self.data_size, self.hidden_dim, batch_first=True)
        self.gru_document_f = nn.GRU(self.hidden_dim, self.hidden_dim, batch_first=True)

        self.gru_sentence_a = []
        self.gru_document_a = []
        for i in range(self.top_k):
            self.gru_sentence_a.append(nn.GRU(self.data_size, self.hidden_dim, batch_first=True))
            self.gru_document_a.append(nn.GRU(self.hidden_dim, self.hidden_dim, batch_first=True))

        self.attentions_f = AttentionTanH(config)
        self.attentionw_f = AttentionTanH(config)

        self.attentions_a = []
        self.attentionw_a = []
        for i in range(self.top_k):
            self.attentions_a.append(AttentionTanH(config))
            self.attentionw_a.append(AttentionTanH(config))
        self.attention_a = AttentionTanH(config)
        task_name = config.get("data", "type_of_label").replace(" ", "").split(",")[0]
        self.outfc = nn.Linear(150, get_num_classes(task_name))

        self.midfc1 = nn.Linear(self.hidden_dim * 2, 200)
        self.midfc2 = nn.Linear(200, 150)

        self.attfc_as = nn.Linear(self.hidden_dim, self.hidden_dim)
        self.attfc_aw = nn.Linear(self.hidden_dim, self.hidden_dim)
        self.attfc_ad = nn.Linear(self.hidden_dim, self.hidden_dim)

        self.birnn = nn.RNN(self.hidden_dim, self.hidden_dim, batch_first=True)

        self.init_hidden(config, usegpu)

        self.gru_sentence_a = nn.ModuleList(self.gru_sentence_a)
        self.gru_document_a = nn.ModuleList(self.gru_document_a)
        self.attentions_a = nn.ModuleList(self.attentions_a)
        self.attentionw_a = nn.ModuleList(self.attentionw_a)
        self.svm = svm(config, usegpu)
        self.decoder = FCDecoder(config, usegpu)
Esempio n. 5
0
    def __init__(self, config, usegpu):
        super(LSTMArticleDecoder, self).__init__()
        self.feature_len = config.getint("net", "hidden_size")

        features = config.getint("net", "hidden_size")
        self.hidden_dim = features
        self.outfc = []
        task_name = config.get("data", "type_of_label").replace(" ",
                                                                "").split(",")
        for x in task_name:
            self.outfc.append(nn.Linear(features, get_num_classes(x)))

        self.midfc = []
        for x in task_name:
            self.midfc.append(nn.Linear(features, features))

        self.cell_list = [None]
        for x in task_name:
            self.cell_list.append(
                nn.LSTMCell(config.getint("net", "hidden_size"),
                            config.getint("net", "hidden_size")))

        self.hidden_state_fc_list = []
        for a in range(0, len(task_name) + 1):
            arr = []
            for b in range(0, len(task_name) + 1):
                arr.append(nn.Linear(features, features))
            arr = nn.ModuleList(arr)
            self.hidden_state_fc_list.append(arr)

        self.cell_state_fc_list = []
        for a in range(0, len(task_name) + 1):
            arr = []
            for b in range(0, len(task_name) + 1):
                arr.append(nn.Linear(features, features))
            arr = nn.ModuleList(arr)
            self.cell_state_fc_list.append(arr)

        self.attention = Attention(config)
        self.outfc = nn.ModuleList(self.outfc)
        self.midfc = nn.ModuleList(self.midfc)
        self.cell_list = nn.ModuleList(self.cell_list)
        self.hidden_state_fc_list = nn.ModuleList(self.hidden_state_fc_list)
        self.cell_state_fc_list = nn.ModuleList(self.cell_state_fc_list)
        self.sigmoid = nn.Sigmoid()

        self.article_encoder = ArticleEncoder(config, usegpu)
        self.article_fc_list = []
        for a in range(0, len(task_name) + 1):
            self.article_fc_list.append(nn.Linear(features, features))
        self.article_fc_list = nn.ModuleList(self.article_fc_list)
Esempio n. 6
0
    def forward(self, x, doc_len, config, label):
        label_list = []
        accumulate = 0
        for a in range(0, len(self.task_name)):
            num = get_num_classes(self.task_name[a])
            label_list.append(label[:, accumulate:accumulate + num].float())
            accumulate += num

        outputs = []
        format_outputs = []
        for a in range(0, len(self.task_name)):
            document_embedding = self.combine_fc[a](self.encoder_list[a].forward(x, doc_len, config))
            for b in range(0, a):
                if self.training:
                    document_embedding = document_embedding + self.mix_fc[b][a](label_list[b])
                else:
                    document_embedding = document_embedding + self.mix_fc[b][a](format_outputs[b])
            output = self.out_fc[a](document_embedding)
            outputs.append(output)
            output = torch.max(output, dim=1)[1]
            output = one_hot(output, get_num_classes(self.task_name[a]))
            format_outputs.append(output)

        return outputs
Esempio n. 7
0
    def __init__(self, config, usegpu):
        super(FCDecoder, self).__init__()
        try:
            features = config.getint("net", "fc1_feature")
        except configparser.NoOptionError:
            features = config.getint("net", "hidden_size")

        self.outfc = []
        task_name = config.get("data", "type_of_label").replace(" ",
                                                                "").split(",")
        for x in task_name:
            self.outfc.append(nn.Linear(features, get_num_classes(x)))

        self.midfc = []
        for x in task_name:
            self.midfc.append(nn.Linear(features, features))

        self.outfc = nn.ModuleList(self.outfc)
        self.midfc = nn.ModuleList(self.midfc)
        self.sigmoid = nn.Sigmoid()
Esempio n. 8
0
def analyze_crit(data, config):
    res = torch.from_numpy(np.zeros(get_num_classes("crit")))
    for x in data:
        if x in accusation_dict.keys():
            res[accusation_dict[x]] = 1
    return res
Esempio n. 9
0
    def __init__(self, config, usegpu):
        super(NNFactArtSeq, self).__init__()

        self.data_size = config.getint("data", "vec_size")
        self.hidden_dim = config.getint("net", "hidden_size")
        self.top_k = config.getint("data", "top_k")

        self.gru_sentence_f = nn.GRU(self.data_size, self.hidden_dim, batch_first=True)
        self.gru_document_f = nn.GRU(self.hidden_dim, self.hidden_dim, batch_first=True)

        self.gru_sentence_a = []
        self.gru_document_a = []
        for i in range(self.top_k):
            self.gru_sentence_a.append(nn.GRU(self.data_size, self.hidden_dim, batch_first=True))
            self.gru_document_a.append(nn.GRU(self.hidden_dim, self.hidden_dim, batch_first=True))

        self.attentions_f = AttentionTanH(config)
        self.attentionw_f = AttentionTanH(config)

        self.attentions_a = []
        self.attentionw_a = []
        for i in range(self.top_k):
            self.attentions_a.append(AttentionTanH(config))
            self.attentionw_a.append(AttentionTanH(config))
        self.attention_a = AttentionTanH(config)
        # task_name = config.get("data", "type_of_label").replace(" ", "").split(",")[0]
        # self.outfc = nn.Linear(150, get_num_classes(task_name))

        self.midfc1 = nn.Linear(self.hidden_dim * 2, self.hidden_dim * 2)
        self.midfc2 = nn.Linear(self.hidden_dim * 2, self.hidden_dim)

        self.attfc_as = nn.Linear(self.hidden_dim, self.hidden_dim)
        self.attfc_aw = nn.Linear(self.hidden_dim, self.hidden_dim)
        self.attfc_ad = nn.Linear(self.hidden_dim, self.hidden_dim)

        self.birnn = nn.RNN(self.hidden_dim, self.hidden_dim, batch_first=True)

        self.init_hidden(config, usegpu)

        self.gru_sentence_a = nn.ModuleList(self.gru_sentence_a)
        self.gru_document_a = nn.ModuleList(self.gru_document_a)
        self.attentions_a = nn.ModuleList(self.attentions_a)
        self.attentionw_a = nn.ModuleList(self.attentionw_a)

        self.outfc = []
        task_name = config.get("data", "type_of_label").replace(" ", "").split(",")
        for x in task_name:
            self.outfc.append(nn.Linear(
                self.hidden_dim, get_num_classes(x)
            ))

        self.midfc = []
        for x in task_name:
            self.midfc.append(nn.Linear(self.hidden_dim, self.hidden_dim))

        self.cell_list = [None]
        for x in task_name:
            self.cell_list.append(nn.LSTMCell(self.hidden_dim, self.hidden_dim))

        self.outfc = nn.ModuleList(self.outfc)
        self.midfc = nn.ModuleList(self.midfc)

        self.hidden_state_fc_list = []
        for a in range(0, len(task_name) + 1):
            arr = []
            for b in range(0, len(task_name) + 1):
                arr.append(nn.Linear(self.hidden_dim, self.hidden_dim))
            arr = nn.ModuleList(arr)
            self.hidden_state_fc_list.append(arr)

        self.cell_state_fc_list = []
        for a in range(0, len(task_name) + 1):
            arr = []
            for b in range(0, len(task_name) + 1):
                arr.append(nn.Linear(self.hidden_dim, self.hidden_dim))
            arr = nn.ModuleList(arr)
            self.cell_state_fc_list.append(arr)

        self.cell_list = nn.ModuleList(self.cell_list)
        self.hidden_state_fc_list = nn.ModuleList(self.hidden_state_fc_list)
        self.cell_state_fc_list = nn.ModuleList(self.cell_state_fc_list)