Esempio n. 1
0
        Resize((256, 128)),
        ToTensor(),
        Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    print('Start dataloader...')
    train_dataloader = utils.Get_Video_train_DataLoader(args.train_txt,args.train_info, train_transform, shuffle=True,num_workers=args.num_workers,\
                                                        S=args.S,track_per_class=args.track_per_class,class_per_batch=args.class_per_batch)
    num_class = train_dataloader.dataset.n_id
    test_dataloader = utils.Get_Video_test_DataLoader(args.test_txt,args.test_info,args.query_info,test_transform,batch_size=args.batch_size,\
                                                 shuffle=False,num_workers=args.num_workers,S=args.S,distractor=True)
    print('End dataloader...')

    network = nn.DataParallel(
        models.CNN(args.latent_dim,
                   model_type=args.model_type,
                   num_class=num_class,
                   non_layers=args.non_layers,
                   stripes=args.stripes,
                   temporal=args.temporal).cuda())
    if args.load_ckpt is not None:
        state = torch.load(args.load_ckpt)
        network.load_state_dict(state, strict=False)
    # log
    os.system('mkdir -p %s' % (args.ckpt))
    f = open(os.path.join(args.ckpt, args.log_path), 'a')
    f.close()

    # Train loop
    # 1. Criterion
    criterion_triplet = TripletLoss('soft', True)

    critetion_id = nn.CrossEntropyLoss().cuda()
Esempio n. 2
0
        Resize((256, 128)),
        ToTensor(),
        Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    print('Start dataloader...')
    train_dataloader = utils.Get_Video_train_DataLoader(args.train_txt,args.train_info, train_transform, shuffle=True,num_workers=args.num_workers,\
                                                        S=args.S,track_per_class=args.track_per_class,class_per_batch=args.class_per_batch)
    num_class = train_dataloader.dataset.n_id
    test_dataloader = utils.Get_Video_test_DataLoader(args.test_txt,args.test_info,args.query_info,test_transform,batch_size=args.batch_size,\
                                                 shuffle=False,num_workers=args.num_workers,S=args.S,distractor=True)
    print('End dataloader...\n')

    network = nn.DataParallel(
        models.CNN(args.latent_dim,
                   model_type=args.model_type,
                   num_class=num_class,
                   stride=args.stride).cuda())

    if args.load_ckpt is not None:
        state = torch.load(args.load_ckpt)
        network.load_state_dict(state)

    # log
    os.system('mkdir -p %s' % (args.ckpt))
    f = open(os.path.join(args.ckpt, args.log_path), 'a')
    f.close()
    # Train loop
    # 1. Criterion
    criterion_triplet = TripletLoss('soft', True)

    criterion_ID = nn.CrossEntropyLoss().cuda()