Esempio n. 1
0
def run_test():

    # output dir, etc
    out_dir = '/root/share/out/didi/zzz2'
    os.makedirs(out_dir + '/results/top', exist_ok=True)
    os.makedirs(out_dir + '/results/surround', exist_ok=True)
    os.makedirs(out_dir + '/results/lidar', exist_ok=True)

    os.makedirs(out_dir + '/tf', exist_ok=True)
    os.makedirs(out_dir + '/check_points', exist_ok=True)
    log = Logger(out_dir + '/log.txt', mode='a')
    initial_model = '/root/share/out/didi/zzz2/check_points/snap.ckpt-0'  #None None  #

    #lidar data -----------------
    if 1:
        ratios = np.array([0.5, 1, 2], dtype=np.float32)
        scales = np.array([2], dtype=np.float32)
        bases = make_bases(base_size=16, ratios=ratios, scales=scales)
        num_bases = len(bases)
        stride = 4

        lidars, tops, surrounds, rgbs, gt_labels, gt_boxes3d, top_imgs, surround_imgs, timestamps = load_dummy_datas(
        )
        num_frames = len(lidars)

        top_shape = tops[0].shape
        surround_shape = surrounds[0].shape
        rgb_shape = rgbs[0].shape
        top_feature_shape = (top_shape[0] // stride, top_shape[1] // stride)
        out_shape = (8, 3)  #3d box

        #-----------------------
        #check data
        # if 0:
        #     fig = mlab.figure(figure=None, bgcolor=(0,0,0), fgcolor=None, engine=None, size=(1000, 500))
        #     draw_lidar(lidars[0], fig=fig)
        #     draw_gt_boxes3d(gt_boxes3d[0], fig=fig)
        #     mlab.show(1)
        #     cv2.waitKey(1)

    # set anchor boxes
    num_class = 2  #incude background
    anchors, inside_inds = make_anchors(bases, stride, top_shape[0:2],
                                        top_feature_shape[0:2])
    inside_inds = np.arange(0, len(anchors), dtype=np.int32)  #use all  #<todo>
    print('out_shape=%s' % str(out_shape))
    print('num_frames=%d' % num_frames)

    #load model ####################################################################################################
    top_anchors = tf.placeholder(shape=[None, 4],
                                 dtype=tf.int32,
                                 name='anchors')
    top_inside_inds = tf.placeholder(shape=[None],
                                     dtype=tf.int32,
                                     name='inside_inds')

    top_images = tf.placeholder(shape=[None, *top_shape],
                                dtype=tf.float32,
                                name='top')
    surround_images = tf.placeholder(shape=[None, *surround_shape],
                                     dtype=tf.float32,
                                     name='surround')
    rgb_images = tf.placeholder(shape=[None, *rgb_shape],
                                dtype=tf.float32,
                                name='rgb')
    top_rois = tf.placeholder(shape=[None, 5],
                              dtype=tf.float32,
                              name='top_rois')  #<todo> change to int32???
    surround_rois = tf.placeholder(shape=[None, 5],
                                   dtype=tf.float32,
                                   name='surround_rois')
    rgb_rois = tf.placeholder(shape=[None, 5],
                              dtype=tf.float32,
                              name='rgb_rois')

    top_stride, top_features, top_scores, top_probs, top_deltas, proposals, proposal_scores = \
        top_feature_net(top_images, top_anchors, top_inside_inds, num_bases)

    surround_stride, surround_features = surround_feature_net(surround_images)
    rgb_stride, rgb_features = rgb_feature_net(rgb_images)

    fuse_scores, fuse_probs, fuse_deltas = \
        fusion_net(
    ( [top_features,       top_rois,       6,6,1./top_stride     ],
              [surround_features,  surround_rois,  6,6,1./surround_stride],
     [rgb_features,       rgb_rois,       0,0,1./rgb_stride     ],  #disable by 0,0
    ),
            num_class, out_shape) #<todo>  add non max suppression

    #check that stride is correct
    assert (stride == top_stride)

    is_show = 1
    # start testing here  #########################################################################################

    num_ratios = len(ratios)
    num_scales = len(scales)
    fig, axs = plt.subplots(num_scales, num_ratios)

    mfig = mlab.figure(figure=None,
                       bgcolor=(0, 0, 0),
                       fgcolor=None,
                       engine=None,
                       size=(500, 500))

    sess = tf.InteractiveSession()
    with sess.as_default():
        sess.run(tf.global_variables_initializer(), {IS_TRAIN_PHASE: True})
        summary_writer = tf.summary.FileWriter(out_dir + '/tf', sess.graph)
        saver = tf.train.Saver()
        if initial_model is not None:
            saver.restore(sess, initial_model)

        batch_top_cls_loss = 0
        batch_top_reg_loss = 0
        batch_fuse_cls_loss = 0
        batch_fuse_reg_loss = 0

        for idx in range(num_frames):
            batch_top_images = tops[idx].reshape(1, *top_shape)
            batch_surround_images = surrounds[idx].reshape(1, *surround_shape)
            batch_rgb_images = rgbs[idx].reshape(1, *rgb_shape)

            batch_gt_labels = gt_labels[idx]
            batch_gt_boxes3d = gt_boxes3d[idx]
            batch_gt_top_boxes = box3d_to_top_box(batch_gt_boxes3d)

            ## run propsal generation ------------
            fd1 = {
                top_images: batch_top_images,
                top_anchors: anchors,
                top_inside_inds: inside_inds,
                IS_TRAIN_PHASE: True
            }
            batch_proposals, batch_proposal_scores, batch_top_features = sess.run(
                [proposals, proposal_scores, top_features], fd1)
            batch_top_rois = batch_proposals

            batch_rois3d = project_to_roi3d(batch_top_rois)
            batch_surround_rois = project_to_surround_roi(batch_rois3d)
            batch_rgb_rois = project_to_rgb_roi(batch_rois3d)

            ## run classification and regression  -----------
            fd2 = {
                **fd1,
                top_images: batch_top_images,
                surround_images: batch_surround_images,
                rgb_images: batch_rgb_images,
                top_rois: batch_top_rois,
                surround_rois: batch_surround_rois,
                rgb_rois: batch_rgb_rois,
            }
            batch_top_probs, batch_top_deltas = sess.run(
                [top_probs, top_deltas], fd2)
            batch_fuse_probs, batch_fuse_deltas = sess.run(
                [fuse_probs, fuse_deltas], fd2)

            probs, boxes3d = rcnn_nms(batch_fuse_probs,
                                      batch_fuse_deltas,
                                      batch_rois3d,
                                      threshold=0.9)

            #print('ok')
            # debug: ------------------------------------
            if is_show == 1:
                top_image = top_imgs[idx]
                surround_image = surround_imgs[idx]
                lidar = lidars[idx]

                ## show on lidar
                mlab.clf(mfig)
                draw_didi_lidar(mfig, lidar, is_grid=1, is_axis=1)
                if len(boxes3d) != 0:
                    draw_didi_boxes3d(mfig, boxes3d)
                azimuth, elevation, distance, focalpoint = MM_PER_VIEW1
                mlab.view(azimuth, elevation, distance, focalpoint)
                mlab.show(1)

                ## show rpn score maps
                p = batch_top_probs.reshape(*(top_feature_shape[0:2]),
                                            2 * num_bases)
                for n in range(num_bases):

                    pn = p[:, :, 2 * n + 1] * 255
                    if num_scales == 1 or num_ratios == 1:
                        axs[n].cla()
                        axs[n].imshow(pn, cmap='gray', vmin=0, vmax=255)
                    else:
                        r = n % num_scales
                        s = n // num_scales
                        axs[r, s].cla()
                        axs[r, s].imshow(pn, cmap='gray', vmin=0, vmax=255)
                plt.pause(0.01)

                ## show rpn(top) nms
                img_rpn_before_nms = top_image.copy()
                img_rpn_after_nms = top_image.copy()
                draw_rpn_before_nms(img_rpn_before_nms, batch_top_probs,
                                    batch_top_deltas, anchors, inside_inds)
                draw_rpn_after_nms(img_rpn_after_nms, batch_proposals,
                                   batch_proposal_scores)

                imshow('img_rpn_before_nms', img_rpn_before_nms)
                imshow('img_rpn_after_nms', img_rpn_after_nms)
                cv2.waitKey(1)

                ## show rcnn(fuse) nms
                img_rcnn_before_nms = top_image.copy()
                img_rcnn_after_nms_top = top_image.copy()
                img_rcnn_after_nms_surround = surround_image.copy()

                draw_rcnn_berfore_nms(img_rcnn_before_nms, batch_fuse_probs,
                                      batch_fuse_deltas, batch_top_rois,
                                      batch_rois3d)
                draw_rcnn_after_nms_top(img_rcnn_after_nms_top, boxes3d, probs)
                draw_rcnn_after_nms_surround(img_rcnn_after_nms_surround,
                                             boxes3d, probs)

                imshow('img_rcnn_before_nms', img_rcnn_before_nms)
                imshow('img_rcnn_after_nms_top', img_rcnn_after_nms_top)
                imshow('img_rcnn_after_nms_surround',
                       img_rcnn_after_nms_surround)

                #save
                name = timestamps[idx]
                cv2.imwrite(out_dir + '/results/top/%s.png' % name,
                            img_rcnn_after_nms_top)
                cv2.imwrite(out_dir + '/results/surround/%s.png' % name,
                            img_rcnn_after_nms_surround)
                mlab.savefig(out_dir + '/results/lidar/%s.png' % name,
                             figure=mfig)

                if idx == 0: cv2.waitKey(0)

    #make movie
    dir_to_avi(out_dir + '/results/top.avi', out_dir + '/results/top')
    dir_to_avi(out_dir + '/results/surround.avi',
               out_dir + '/results/surround')
    dir_to_avi(out_dir + '/results/lidar.avi', out_dir + '/results/lidar')
Esempio n. 2
0
        name = name)


## main ##----------------------------------------------------------------
if __name__ == '__main__':
    print('\"%s\" running main function ...' % os.path.basename(__file__))

    bases = make_bases(
        base_size=16,
        #ratios=[0.5, 1, 2],
        #scales=2**np.arange(3, 6))
        ratios=[0.5, 1, 2],
        scales=2**np.arange(3, 4))
    num_bases = len(bases)
    stride = 16
    image_shape = (480, 640, 3)
    feature_shape = (480 // stride, 640 // stride, 64)
    anchors, inside_inds = make_anchors(bases, stride, image_shape[0:2],
                                        feature_shape[0:2])

    img_height, img_width, _ = image_shape
    H, W, _ = feature_shape
    scores = np.random.uniform(0, 255, size=(1, H, W,
                                             num_bases * 2)).astype(np.float32)
    deltas = np.random.uniform(0, 1, size=(1, H, W,
                                           num_bases * 4)).astype(np.float32)

    rpn_nms = rpn_nms_generator(stride, img_width, img_height)
    rois, roi_scores = rpn_nms(scores, deltas, anchors, inside_inds)

    print('sucess!')
Esempio n. 3
0
def run_train():

    # output dir, etc
    out_dir = '/root/share/out/didi/zzz2'

    os.makedirs(out_dir + '/tf', exist_ok=True)
    os.makedirs(out_dir + '/check_points', exist_ok=True)
    log = Logger(out_dir + '/log.txt', mode='a')

    initial_model = '/root/share/out/didi/zzz1/check_points/snap.ckpt-0'  #None for no pretrained model

    #lidar data -----------------
    if 1:
        ratios = np.array([0.5, 1, 2], dtype=np.float32)
        scales = np.array([2], dtype=np.float32)
        bases = make_bases(base_size=16, ratios=ratios, scales=scales)
        num_bases = len(bases)
        stride = 4

        lidars, tops, surrounds, rgbs, gt_labels, gt_boxes3d, top_imgs, surround_imgs, timestamps = load_dummy_datas(
        )
        num_frames = len(lidars)

        top_shape = tops[0].shape
        surround_shape = surrounds[0].shape
        rgb_shape = rgbs[0].shape
        top_feature_shape = (top_shape[0] // stride, top_shape[1] // stride)
        out_shape = (8, 3)  #3d box

        #-----------------------
        #check data
        # if 0:
        #     fig = mlab.figure(figure=None, bgcolor=(0,0,0), fgcolor=None, engine=None, size=(1000, 500))
        #     draw_lidar(lidars[0], fig=fig)
        #     draw_gt_boxes3d(gt_boxes3d[0], fig=fig)
        #     mlab.show(1)
        #     cv2.waitKey(1)

    # set anchor boxes
    num_class = 2  #incude background
    anchors, inside_inds = make_anchors(bases, stride, top_shape[0:2],
                                        top_feature_shape[0:2])
    inside_inds = np.arange(0, len(anchors), dtype=np.int32)  #use all  #<todo>
    print('out_shape=%s' % str(out_shape))
    print('num_frames=%d' % num_frames)

    #load model ####################################################################################################
    top_anchors = tf.placeholder(shape=[None, 4],
                                 dtype=tf.int32,
                                 name='anchors')
    top_inside_inds = tf.placeholder(shape=[None],
                                     dtype=tf.int32,
                                     name='inside_inds')

    top_images = tf.placeholder(shape=[None, *top_shape],
                                dtype=tf.float32,
                                name='top')
    surround_images = tf.placeholder(shape=[None, *surround_shape],
                                     dtype=tf.float32,
                                     name='surround')
    rgb_images = tf.placeholder(shape=[None, *rgb_shape],
                                dtype=tf.float32,
                                name='rgb')
    top_rois = tf.placeholder(shape=[None, 5],
                              dtype=tf.float32,
                              name='top_rois')  #<todo> change to int32???
    surround_rois = tf.placeholder(shape=[None, 5],
                                   dtype=tf.float32,
                                   name='surround_rois')
    rgb_rois = tf.placeholder(shape=[None, 5],
                              dtype=tf.float32,
                              name='rgb_rois')

    top_stride, top_features, top_scores, top_probs, top_deltas, proposals, proposal_scores = \
        top_feature_net(top_images, top_anchors, top_inside_inds, num_bases)

    surround_stride, surround_features = surround_feature_net(surround_images)
    rgb_stride, rgb_features = rgb_feature_net(rgb_images)

    fuse_scores, fuse_probs, fuse_deltas = \
        fusion_net(
    ( [top_features,       top_rois,       6,6,1./top_stride     ],
              [surround_features,  surround_rois,  6,6,1./surround_stride],
     [rgb_features,       rgb_rois,       0,0,1./rgb_stride     ],  #disable by 0,0
    ),
            num_class, out_shape) #<todo>  add non max suppression

    #check that stride is correct
    assert (stride == top_stride)

    #loss ########################################################################################################
    top_inds = tf.placeholder(shape=[None], dtype=tf.int32, name='top_ind')
    top_pos_inds = tf.placeholder(shape=[None],
                                  dtype=tf.int32,
                                  name='top_pos_ind')
    top_labels = tf.placeholder(shape=[None], dtype=tf.int32, name='top_label')
    top_targets = tf.placeholder(shape=[None, 4],
                                 dtype=tf.float32,
                                 name='top_target')
    top_cls_loss, top_reg_loss = rpn_loss(top_scores, top_deltas, top_inds,
                                          top_pos_inds, top_labels,
                                          top_targets)

    fuse_labels = tf.placeholder(shape=[None],
                                 dtype=tf.int32,
                                 name='fuse_label')
    fuse_targets = tf.placeholder(shape=[None, *out_shape],
                                  dtype=tf.float32,
                                  name='fuse_target')
    fuse_cls_loss, fuse_reg_loss = rcnn_loss(fuse_scores, fuse_deltas,
                                             fuse_labels, fuse_targets)

    #solver
    l2 = l2_regulariser(decay=0.0005)
    learning_rate = tf.placeholder(tf.float32, shape=[])
    solver = tf.train.MomentumOptimizer(learning_rate=learning_rate,
                                        momentum=0.9)
    #solver_step = solver.minimize(top_cls_loss+top_reg_loss+l2)
    solver_step = solver.minimize(top_cls_loss + 0.1 * top_reg_loss +
                                  0.1 * fuse_cls_loss + 0.01 * fuse_reg_loss +
                                  l2)

    max_iter = 20000
    iter_debug = 8
    # start training here  #########################################################################################
    log.write(
        'epoch     iter    rate   |  top_cls_loss   reg_loss   |  fuse_cls_loss  reg_loss  |  \n'
    )
    log.write(
        '-------------------------------------------------------------------------------------\n'
    )

    num_ratios = len(ratios)
    num_scales = len(scales)
    fig, axs = plt.subplots(num_scales, num_ratios)

    sess = tf.InteractiveSession()
    with sess.as_default():
        sess.run(tf.global_variables_initializer(), {IS_TRAIN_PHASE: True})
        summary_writer = tf.summary.FileWriter(out_dir + '/tf', sess.graph)
        saver = tf.train.Saver()
        if initial_model is not None:
            saver.restore(sess, initial_model)

        batch_top_cls_loss = 0
        batch_top_reg_loss = 0
        batch_fuse_cls_loss = 0
        batch_fuse_reg_loss = 0
        for iter in range(max_iter):
            epoch = 1.0 * iter
            rate = 0.05

            ## generate train image -------------
            idx = np.random.choice(num_frames)  #*10   #num_frames)  #0
            batch_top_images = tops[idx].reshape(1, *top_shape)
            batch_surround_images = surrounds[idx].reshape(1, *surround_shape)
            batch_rgb_images = rgbs[idx].reshape(1, *rgb_shape)

            batch_gt_labels = gt_labels[idx]
            batch_gt_boxes3d = gt_boxes3d[idx]
            batch_gt_top_boxes = box3d_to_top_box(batch_gt_boxes3d)

            ## run propsal generation ------------
            fd1 = {
                top_images: batch_top_images,
                top_anchors: anchors,
                top_inside_inds: inside_inds,
                learning_rate: rate,
                IS_TRAIN_PHASE: True
            }
            batch_proposals, batch_proposal_scores, batch_top_features = sess.run(
                [proposals, proposal_scores, top_features], fd1)

            ## generate train rois  ------------
            batch_top_inds, batch_top_pos_inds, batch_top_labels, batch_top_targets  = \
                rpn_target ( anchors, inside_inds, batch_gt_labels,  batch_gt_top_boxes)

            batch_top_rois, batch_fuse_labels, batch_fuse_targets  = \
                 rcnn_target(  batch_proposals, batch_gt_labels, batch_gt_top_boxes, batch_gt_boxes3d )

            batch_rois3d = project_to_roi3d(batch_top_rois)
            batch_surround_rois = project_to_surround_roi(batch_rois3d)
            batch_rgb_rois = project_to_rgb_roi(batch_rois3d)

            ##debug gt generation
            if 1 and iter % iter_debug == 0:
                top_image = top_imgs[idx]
                #rgb       = rgbs[idx]

                # rpn
                img_gt = top_image.copy()  #*0.75  # make dimmer
                img_label = top_image.copy()
                img_target = top_image.copy()

                draw_rpn_gt(img_gt, batch_gt_top_boxes, batch_gt_labels)
                draw_rpn_labels(img_label, anchors, batch_top_inds,
                                batch_top_labels)
                draw_rpn_targets(img_target, anchors, batch_top_pos_inds,
                                 batch_top_targets)
                imshow('img_rpn_gt', img_gt)
                imshow('img_rpn_label', img_label)
                imshow('img_rpn_target', img_target)

                # rcnn
                img_label = top_image.copy()
                img_target = top_image.copy()

                draw_rcnn_labels(img_label, batch_top_rois, batch_fuse_labels)
                draw_rcnn_targets(img_target, batch_top_rois,
                                  batch_fuse_labels, batch_fuse_targets)
                imshow('img_rcnn_label', img_label)
                imshow('img_rcnn_target', img_target)

                cv2.waitKey(1)

            ## run classification and regression loss -----------
            fd2 = {
                **fd1,
                top_images: batch_top_images,
                surround_images: batch_surround_images,
                rgb_images: batch_rgb_images,
                top_rois: batch_top_rois,
                surround_rois: batch_surround_rois,
                rgb_rois: batch_rgb_rois,
                top_inds: batch_top_inds,
                top_pos_inds: batch_top_pos_inds,
                top_labels: batch_top_labels,
                top_targets: batch_top_targets,
                fuse_labels: batch_fuse_labels,
                fuse_targets: batch_fuse_targets,
            }
            #_, batch_top_cls_loss, batch_top_reg_loss = sess.run([solver_step, top_cls_loss, top_reg_loss],fd2)


            _, batch_top_cls_loss, batch_top_reg_loss, batch_fuse_cls_loss, batch_fuse_reg_loss = \
               sess.run([solver_step, top_cls_loss, top_reg_loss, fuse_cls_loss, fuse_reg_loss],fd2)

            log.write('%3.1f   %d   %0.4f   |   %0.5f   %0.5f   |   %0.5f   %0.5f  \n' %\
    (epoch, iter, rate, batch_top_cls_loss, batch_top_reg_loss, batch_fuse_cls_loss, batch_fuse_reg_loss))

            #print('ok')
            # debug: ------------------------------------

            if iter % iter_debug == 0:
                top_image = top_imgs[idx]
                surround_image = surround_imgs[idx]

                batch_top_probs, batch_top_deltas = sess.run(
                    [top_probs, top_deltas], fd2)
                batch_fuse_probs, batch_fuse_deltas = sess.run(
                    [fuse_probs, fuse_deltas], fd2)

                probs, boxes3d = rcnn_nms(batch_fuse_probs,
                                          batch_fuse_deltas,
                                          batch_rois3d,
                                          threshold=0.8)

                ## show rpn score maps
                p = batch_top_probs.reshape(*(top_feature_shape[0:2]),
                                            2 * num_bases)
                for n in range(num_bases):

                    pn = p[:, :, 2 * n + 1] * 255
                    if num_scales == 1 or num_ratios == 1:
                        axs[n].cla()
                        axs[n].imshow(pn, cmap='gray', vmin=0, vmax=255)
                    else:
                        r = n % num_scales
                        s = n // num_scales
                        axs[r, s].cla()
                        axs[r, s].imshow(pn, cmap='gray', vmin=0, vmax=255)
                plt.pause(0.01)

                ## show rpn(top) nms
                img_rpn_before_nms = top_image.copy()
                img_rpn_after_nms = top_image.copy()
                draw_rpn_before_nms(img_rpn_before_nms, batch_top_probs,
                                    batch_top_deltas, anchors, inside_inds)
                draw_rpn_after_nms(img_rpn_after_nms, batch_proposals,
                                   batch_proposal_scores)

                imshow('img_rpn_before_nms', img_rpn_before_nms)
                imshow('img_rpn_after_nms', img_rpn_after_nms)
                cv2.waitKey(1)

                ## show rcnn(fuse) nms
                img_rcnn_before_nms = top_image.copy()
                img_rcnn_after_nms_top = top_image.copy()
                img_rcnn_after_nms_surround = surround_image.copy()

                draw_rcnn_berfore_nms(img_rcnn_before_nms, batch_fuse_probs,
                                      batch_fuse_deltas, batch_top_rois,
                                      batch_rois3d)
                draw_rcnn_after_nms_top(img_rcnn_after_nms_top, boxes3d, probs)
                draw_rcnn_after_nms_surround(img_rcnn_after_nms_surround,
                                             boxes3d, probs)

                imshow('img_rcnn_before_nms', img_rcnn_before_nms)
                imshow('img_rcnn_after_nms_top', img_rcnn_after_nms_top)
                imshow('img_rcnn_after_nms_surround',
                       img_rcnn_after_nms_surround)
                cv2.waitKey(1)

            # save: ------------------------------------
            if iter % 500 == 0:
                #saver.save(sess, out_dir + '/check_points/%06d.ckpt'%iter)  #iter
                saver.save(sess,
                           out_dir + '/check_points/snap.ckpt',
                           global_step=0)  #iter