def main(): parser = argparse.ArgumentParser(description='Chainer example: VAE') parser.add_argument('--initmodel', '-m', default='', help='Initialize the model from given file') parser.add_argument('--resume', '-r', default='', help='Resume the optimization from snapshot') parser.add_argument('--gpu', '-g', default=-1, type=int, help='GPU ID (negative value indicates CPU)') parser.add_argument('--out', '-o', default='results', help='Directory to output the result') parser.add_argument('--epoch', '-e', default=100, type=int, help='number of epochs to learn') parser.add_argument('--dim-z', '-z', default=20, type=int, help='dimention of encoded vector') parser.add_argument('--dim-h', default=500, type=int, help='dimention of hidden layer') parser.add_argument('--beta', default=1.0, type=float, help='Regularization coefficient for ' 'the second term of ELBO bound') parser.add_argument('--k', '-k', default=1, type=int, help='Number of Monte Carlo samples used in ' 'encoded vector') parser.add_argument('--binary', action='store_true', help='Use binarized MNIST') parser.add_argument('--batch-size', '-b', type=int, default=100, help='learning minibatch size') parser.add_argument('--test', action='store_true', help='Use tiny datasets for quick tests') args = parser.parse_args() print('GPU: {}'.format(args.gpu)) print('# dim z: {}'.format(args.dim_z)) print('# Minibatch-size: {}'.format(args.batch_size)) print('# epoch: {}'.format(args.epoch)) print('') # Prepare VAE model, defined in net.py encoder = net.make_encoder(784, args.dim_z, args.dim_h) decoder = net.make_decoder(784, args.dim_z, args.dim_h, binary_check=args.binary) prior = net.make_prior(args.dim_z) avg_elbo_loss = net.AvgELBOLoss(encoder, decoder, prior, beta=args.beta, k=args.k) if args.gpu >= 0: avg_elbo_loss.to_gpu(args.gpu) # Setup an optimizer optimizer = chainer.optimizers.Adam() optimizer.setup(avg_elbo_loss) # Initialize if args.initmodel: chainer.serializers.load_npz(args.initmodel, avg_elbo_loss) # Load the MNIST dataset train, test = chainer.datasets.get_mnist(withlabel=False) if args.binary: # Binarize dataset train = (train >= 0.5).astype(np.float32) test = (test >= 0.5).astype(np.float32) if args.test: train, _ = chainer.datasets.split_dataset(train, 100) test, _ = chainer.datasets.split_dataset(test, 100) train_iter = chainer.iterators.SerialIterator(train, args.batch_size) test_iter = chainer.iterators.SerialIterator(test, args.batch_size, repeat=False, shuffle=False) # Set up an updater. StandardUpdater can explicitly specify a loss function # used in the training with 'loss_func' option updater = training.updaters.StandardUpdater( train_iter, optimizer, device=args.gpu, loss_func=avg_elbo_loss) trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out) trainer.extend(extensions.Evaluator( test_iter, avg_elbo_loss, device=args.gpu)) trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.snapshot(), trigger=(args.epoch, 'epoch')) trainer.extend(extensions.LogReport()) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/reconstr', 'main/kl_penalty', 'elapsed_time'])) trainer.extend(extensions.ProgressBar()) if args.resume: chainer.serializers.load_npz(args.resume, trainer) # Run the training trainer.run() # Visualize the results def save_images(x, filename): import matplotlib.pyplot as plt fig, ax = plt.subplots(3, 3, figsize=(9, 9), dpi=100) for ai, xi in zip(ax.flatten(), x): ai.imshow(xi.reshape(28, 28)) fig.savefig(filename) avg_elbo_loss.to_cpu() train_ind = [1, 3, 5, 10, 2, 0, 13, 15, 17] x = chainer.Variable(np.asarray(train[train_ind])) with chainer.using_config('train', False), chainer.no_backprop_mode(): x1 = decoder(encoder(x).mean, inference=True).mean save_images(x.array, os.path.join(args.out, 'train')) save_images(x1.array, os.path.join(args.out, 'train_reconstructed')) test_ind = [3, 2, 1, 18, 4, 8, 11, 17, 61] x = chainer.Variable(np.asarray(test[test_ind])) with chainer.using_config('train', False), chainer.no_backprop_mode(): x1 = decoder(encoder(x).mean, inference=True).mean save_images(x.array, os.path.join(args.out, 'test')) save_images(x1.array, os.path.join(args.out, 'test_reconstructed')) # draw images from randomly sampled z z = prior().sample(9) x = decoder(z, inference=True).mean save_images(x.array, os.path.join(args.out, 'sampled'))
def main(): parser = argparse.ArgumentParser(description='Chainer example: VAE') parser.add_argument('--initmodel', '-m', type=str, help='Initialize the model from given file') parser.add_argument('--resume', '-r', type=str, help='Resume the optimization from snapshot') parser.add_argument('--gpu', '-g', default=-1, type=int, help='GPU ID (negative value indicates CPU)') parser.add_argument('--out', '-o', default='results', help='Directory to output the result') parser.add_argument('--epoch', '-e', default=100, type=int, help='number of epochs to learn') parser.add_argument('--dim-z', '-z', default=20, type=int, help='dimention of encoded vector') parser.add_argument('--dim-h', default=500, type=int, help='dimention of hidden layer') parser.add_argument('--beta', default=1.0, type=float, help='Regularization coefficient for ' 'the second term of ELBO bound') parser.add_argument('--k', '-k', default=1, type=int, help='Number of Monte Carlo samples used in ' 'encoded vector') parser.add_argument('--binary', action='store_true', help='Use binarized MNIST') parser.add_argument('--batch-size', '-b', type=int, default=100, help='learning minibatch size') parser.add_argument('--test', action='store_true', help='Use tiny datasets for quick tests') args = parser.parse_args() print('GPU: {}'.format(args.gpu)) print('# dim z: {}'.format(args.dim_z)) print('# Minibatch-size: {}'.format(args.batch_size)) print('# epoch: {}'.format(args.epoch)) print('') # Prepare VAE model, defined in net.py encoder = net.make_encoder(784, args.dim_z, args.dim_h) decoder = net.make_decoder(784, args.dim_z, args.dim_h, binary_check=args.binary) prior = net.make_prior(args.dim_z) avg_elbo_loss = net.AvgELBOLoss(encoder, decoder, prior, beta=args.beta, k=args.k) if args.gpu >= 0: avg_elbo_loss.to_gpu(args.gpu) # Setup an optimizer optimizer = chainer.optimizers.Adam() optimizer.setup(avg_elbo_loss) # Initialize if args.initmodel is not None: chainer.serializers.load_npz(args.initmodel, avg_elbo_loss) # Load the MNIST dataset train, test = chainer.datasets.get_mnist(withlabel=False) if args.binary: # Binarize dataset train = (train >= 0.5).astype(np.float32) test = (test >= 0.5).astype(np.float32) if args.test: train, _ = chainer.datasets.split_dataset(train, 100) test, _ = chainer.datasets.split_dataset(test, 100) train_iter = chainer.iterators.SerialIterator(train, args.batch_size) test_iter = chainer.iterators.SerialIterator(test, args.batch_size, repeat=False, shuffle=False) # Set up an updater. StandardUpdater can explicitly specify a loss function # used in the training with 'loss_func' option updater = training.updaters.StandardUpdater(train_iter, optimizer, device=args.gpu, loss_func=avg_elbo_loss) trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out) trainer.extend( extensions.Evaluator(test_iter, avg_elbo_loss, device=args.gpu)) trainer.extend(extensions.DumpGraph('main/loss')) trainer.extend(extensions.snapshot(), trigger=(args.epoch, 'epoch')) trainer.extend(extensions.LogReport()) trainer.extend( extensions.PrintReport([ 'epoch', 'main/loss', 'validation/main/loss', 'main/reconstr', 'main/kl_penalty', 'elapsed_time' ])) trainer.extend(extensions.ProgressBar()) if args.resume is not None: chainer.serializers.load_npz(args.resume, trainer) # Run the training trainer.run() # Visualize the results def save_images(x, filename): import matplotlib.pyplot as plt fig, ax = plt.subplots(3, 3, figsize=(9, 9), dpi=100) for ai, xi in zip(ax.flatten(), x): ai.imshow(xi.reshape(28, 28)) fig.savefig(filename) avg_elbo_loss.to_cpu() train_ind = [1, 3, 5, 10, 2, 0, 13, 15, 17] x = chainer.Variable(np.asarray(train[train_ind])) with chainer.using_config('train', False), chainer.no_backprop_mode(): x1 = decoder(encoder(x).mean, inference=True).mean save_images(x.array, os.path.join(args.out, 'train')) save_images(x1.array, os.path.join(args.out, 'train_reconstructed')) test_ind = [3, 2, 1, 18, 4, 8, 11, 17, 61] x = chainer.Variable(np.asarray(test[test_ind])) with chainer.using_config('train', False), chainer.no_backprop_mode(): x1 = decoder(encoder(x).mean, inference=True).mean save_images(x.array, os.path.join(args.out, 'test')) save_images(x1.array, os.path.join(args.out, 'test_reconstructed')) # draw images from randomly sampled z z = prior().sample(9) x = decoder(z, inference=True).mean save_images(x.array, os.path.join(args.out, 'sampled'))
def main(): parser = argparse.ArgumentParser(description='Chainer example: VAE') parser.add_argument('--initmodel', '-m', type=str, help='Initialize the model from given file') parser.add_argument('--resume', '-r', type=str, help='Resume the optimization from snapshot') parser.add_argument('--device', '-d', type=str, default='-1', help='Device specifier. Either ChainerX device ' 'specifier or an integer. If non-negative integer, ' 'CuPy arrays with specified device id are used. If ' 'negative integer, NumPy arrays are used') parser.add_argument('--out', '-o', default='results', help='Directory to output the result') parser.add_argument('--epoch', '-e', default=100, type=int, help='number of epochs to learn') parser.add_argument('--dim-z', '-z', default=20, type=int, help='dimension of encoded vector') parser.add_argument('--dim-h', default=500, type=int, help='dimension of hidden layer') parser.add_argument('--beta', default=1.0, type=float, help='Regularization coefficient for ' 'the second term of ELBO bound') parser.add_argument('--k', '-k', default=1, type=int, help='Number of Monte Carlo samples used in ' 'encoded vector') parser.add_argument('--binary', action='store_true', help='Use binarized MNIST') parser.add_argument('--batch-size', '-b', type=int, default=100, help='learning minibatch size') parser.add_argument('--test', action='store_true', help='Use tiny datasets for quick tests') group = parser.add_argument_group('deprecated arguments') group.add_argument('--gpu', '-g', dest='device', type=int, nargs='?', const=0, help='GPU ID (negative value indicates CPU)') args = parser.parse_args() if chainer.get_dtype() == np.float16: warnings.warn('This example may cause NaN in FP16 mode.', RuntimeWarning) device = chainer.get_device(args.device) device.use() print('Device: {}'.format(device)) print('# dim z: {}'.format(args.dim_z)) print('# Minibatch-size: {}'.format(args.batch_size)) print('# epoch: {}'.format(args.epoch)) print('') # Prepare VAE model, defined in net.py encoder = net.make_encoder(784, args.dim_z, args.dim_h) decoder = net.make_decoder(784, args.dim_z, args.dim_h, binary_check=args.binary) prior = net.make_prior(args.dim_z) avg_elbo_loss = net.AvgELBOLoss(encoder, decoder, prior, beta=args.beta, k=args.k) avg_elbo_loss.to_device(device) # Setup an optimizer optimizer = chainer.optimizers.Adam() optimizer.setup(avg_elbo_loss) # If initial parameters are given, initialize the model with them. if args.initmodel is not None: chainer.serializers.load_npz(args.initmodel, avg_elbo_loss) # Load the MNIST dataset train, test = chainer.datasets.get_mnist(withlabel=False) if args.binary: # Binarize dataset train = (train >= 0.5).astype(np.float32) test = (test >= 0.5).astype(np.float32) if args.test: train, _ = chainer.datasets.split_dataset(train, 100) test, _ = chainer.datasets.split_dataset(test, 100) train_iter = chainer.iterators.SerialIterator(train, args.batch_size) test_iter = chainer.iterators.SerialIterator(test, args.batch_size, repeat=False, shuffle=False) # Set up an updater. StandardUpdater can explicitly specify a loss function # used in the training with 'loss_func' option updater = training.updaters.StandardUpdater(train_iter, optimizer, device=device, loss_func=avg_elbo_loss) # Set up the trainer and extensions. trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out) trainer.extend( extensions.Evaluator(test_iter, avg_elbo_loss, device=device)) # TODO(niboshi): Temporarily disabled for chainerx. Fix it. if device.xp is not chainerx: trainer.extend(extensions.DumpGraph('main/loss')) trainer.extend(extensions.snapshot(), trigger=(args.epoch, 'epoch')) trainer.extend(extensions.LogReport()) trainer.extend( extensions.PrintReport([ 'epoch', 'main/loss', 'validation/main/loss', 'main/reconstr', 'main/kl_penalty', 'elapsed_time' ])) trainer.extend(extensions.ProgressBar()) # If snapshot file is given, resume the training. if args.resume is not None: chainer.serializers.load_npz(args.resume, trainer) # Run the training trainer.run() # Save images for demonstration save_images(device, encoder, decoder, train, test, prior, args.out)