Esempio n. 1
0
from dataset import yoloDataset

from visualize import Visualizer
import numpy as np

use_gpu = torch.cuda.is_available()

file_root = '/home/xzh/data/VOCdevkit/VOC2012/allimgs/'
learning_rate = 0.001
num_epochs = 50
batch_size = 24
use_resnet = True
if use_resnet:
    net = resnet50()
else:
    net = vgg16_bn()
# net.classifier = nn.Sequential(
#             nn.Linear(512 * 7 * 7, 4096),
#             nn.ReLU(True),
#             nn.Dropout(),
#             #nn.Linear(4096, 4096),
#             #nn.ReLU(True),
#             #nn.Dropout(),
#             nn.Linear(4096, 1470),
#         )
#net = resnet18(pretrained=True)
#net.fc = nn.Linear(512,1470)
# initial Linear
# for m in net.modules():
#     if isinstance(m, nn.Linear):
#         m.weight.data.normal_(0, 0.01)
Esempio n. 2
0
        cls_index = cls_indexs[i]
        cls_index = int(cls_index)  # convert LongTensor to int
        prob = probs[i]
        prob = float(prob)
        result.append([(x1, y1), (x2, y2), VOC_CLASSES[cls_index], image_name,
                       prob])
    return result


if __name__ == '__main__':
    # model = resnet50()
    if torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")
    model = vgg16_bn()
    print('load model...')
    model.load_state_dict(torch.load('best.pth'))
    model.eval()
    model.to(device)
    image_name = 'person.jpg'
    image = cv2.imread(image_name)
    print('predicting...')
    result = predict_gpu(model, image_name)
    for left_up, right_bottom, class_name, _, prob in result:
        color = Color[VOC_CLASSES.index(class_name)]
        cv2.rectangle(image, left_up, right_bottom, color, 2)
        label = class_name + str(round(prob, 2))
        text_size, baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX,
                                              0.4, 1)
        p1 = (left_up[0], left_up[1] - text_size[1])