def test_sac(args=get_args()): torch.set_num_threads(1) # we just need only one thread for NN env = gym.make(args.task) if args.task == 'Pendulum-v0': env.spec.reward_threshold = -250 args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] # you can also use tianshou.env.SubprocVectorEnv # train_envs = gym.make(args.task) train_envs = VectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = VectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model actor = ActorProb(args.layer_num, args.state_shape, args.action_shape, args.max_action, args.device).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) critic1 = Critic(args.layer_num, args.state_shape, args.action_shape, args.device).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) critic2 = Critic(args.layer_num, args.state_shape, args.action_shape, args.device).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) policy = SACPolicy(actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, args.tau, args.gamma, args.alpha, [env.action_space.low[0], env.action_space.high[0]], reward_normalization=True, ignore_done=True) # collector train_collector = Collector(policy, train_envs, ReplayBuffer(args.buffer_size)) test_collector = Collector(policy, test_envs) # train_collector.collect(n_step=args.buffer_size) # log log_path = os.path.join(args.logdir, args.task, 'sac') writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(x): return x >= env.spec.reward_threshold # trainer result = offpolicy_trainer(policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer) assert stop_fn(result['best_reward']) train_collector.close() test_collector.close() if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}') collector.close()
def test_sac(): args, log_path, writer = get_args() env = gym.make(args.task) if args.task == 'Pendulum-v0': env.spec.reward_threshold = -250 args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] # you can also use tianshou.env.SubprocVectorEnv # train_envs = gym.make(args.task) train_envs = ShmPipeVecEnv([ lambda: TransformReward(BipedalWrapper(gym.make(args.task)), lambda reward: 5 * reward) for _ in range(args.training_num) ]) # test_envs = gym.make(args.task) test_envs = ShmPipeVecEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed + 1) # model actor = ActorProb(args.layer_num, args.state_shape, args.action_shape, args.max_action, args.device).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) critic = DQCritic(args.layer_num, args.state_shape, args.action_shape, args.device).to(args.device) critic_target = DQCritic(args.layer_num, args.state_shape, args.action_shape, args.device).to(args.device) critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr) policy = SACPolicy(actor, actor_optim, critic, critic_optim, critic_target, env.action_space, args.device, args.tau, args.gamma, args.alpha, reward_normalization=args.rew_norm, ignore_done=False) if args.mode == 'test': policy.load_state_dict( torch.load("{}/{}/{}/policy.pth".format(args.logdir, args.task, args.comment), map_location=args.device)) env = gym.make(args.task) collector = Collector(policy, env # Monitor(env, 'video', force=True) ) result = collector.collect(n_episode=10, render=args.render) print( f'Final reward: {result["ep/reward"]}, length: {result["ep/len"]}') collector.close() exit() # collector train_collector = Collector(policy, train_envs, ReplayBuffer(args.buffer_size)) train_collector.collect(10000, sampling=True) test_collector = Collector(policy, test_envs) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(x): return x >= env.spec.reward_threshold + 5 # trainer result = offpolicy_trainer(policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_episode, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer) assert stop_fn(result['best_reward']) pprint.pprint(result)
def _test_ppo(args=get_args()): # just a demo, I have not made it work :( env = gym.make(args.task) if args.task == 'Pendulum-v0': env.spec.reward_threshold = -250 args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] # train_envs = gym.make(args.task) train_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model actor = ActorProb(args.layer_num, args.state_shape, args.action_shape, args.max_action, args.device).to(args.device) critic = Critic(args.layer_num, args.state_shape, device=args.device).to(args.device) optim = torch.optim.Adam(list(actor.parameters()) + list(critic.parameters()), lr=args.lr) dist = torch.distributions.Normal policy = PPOPolicy( actor, critic, optim, dist, args.gamma, max_grad_norm=args.max_grad_norm, eps_clip=args.eps_clip, vf_coef=args.vf_coef, ent_coef=args.ent_coef, action_range=[env.action_space.low[0], env.action_space.high[0]]) # collector train_collector = Collector(policy, train_envs, ReplayBuffer(args.buffer_size)) test_collector = Collector(policy, test_envs) train_collector.collect(n_step=args.step_per_epoch) # log writer = SummaryWriter(args.logdir + '/' + 'ppo') def stop_fn(x): return x >= env.spec.reward_threshold # trainer result = onpolicy_trainer(policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.repeat_per_collect, args.test_num, args.batch_size, stop_fn=stop_fn, writer=writer, task=args.task) assert stop_fn(result['best_reward']) train_collector.close() test_collector.close() if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}') collector.close()
def test_ppo(args=get_args()): torch.set_num_threads(1) # we just need only one thread for NN env = gym.make(args.task) if args.task == 'Pendulum-v0': env.spec.reward_threshold = -250 args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] # you can also use tianshou.env.SubprocVectorEnv # train_envs = gym.make(args.task) train_envs = VectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = VectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model actor = ActorProb(args.layer_num, args.state_shape, args.action_shape, args.max_action, args.device).to(args.device) critic = Critic(args.layer_num, args.state_shape, device=args.device).to(args.device) optim = torch.optim.Adam(list(actor.parameters()) + list(critic.parameters()), lr=args.lr) dist = torch.distributions.Normal policy = PPOPolicy( actor, critic, optim, dist, args.gamma, max_grad_norm=args.max_grad_norm, eps_clip=args.eps_clip, vf_coef=args.vf_coef, ent_coef=args.ent_coef, reward_normalization=args.rew_norm, dual_clip=args.dual_clip, value_clip=args.value_clip, # action_range=[env.action_space.low[0], env.action_space.high[0]],) # if clip the action, ppo would not converge :) gae_lambda=args.gae_lambda) # collector train_collector = Collector(policy, train_envs, ReplayBuffer(args.buffer_size)) test_collector = Collector(policy, test_envs) # log log_path = os.path.join(args.logdir, args.task, 'ppo') writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(x): return x >= env.spec.reward_threshold # trainer result = onpolicy_trainer(policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.repeat_per_collect, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer) assert stop_fn(result['best_reward']) train_collector.close() test_collector.close() if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}') collector.close()
def test_sac(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] # train_envs = gym.make(args.task) train_envs = VectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = VectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model actor = ActorProb(args.layer_num, args.state_shape, args.action_shape, args.max_action, args.device).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) critic1 = Critic(args.layer_num, args.state_shape, args.action_shape, args.device).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) critic2 = Critic(args.layer_num, args.state_shape, args.action_shape, args.device).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) if args.auto_alpha: target_entropy = -np.prod(env.action_space.shape) log_alpha = torch.zeros(1, requires_grad=True, device=args.device) alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr) alpha = (target_entropy, log_alpha, alpha_optim) else: alpha = args.alpha policy = SACPolicy(actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, args.tau, args.gamma, alpha, [env.action_space.low[0], env.action_space.high[0]], reward_normalization=args.rew_norm, ignore_done=True, exploration_noise=OUNoise(0.0, args.noise_std)) # collector train_collector = Collector(policy, train_envs, ReplayBuffer(args.buffer_size)) test_collector = Collector(policy, test_envs) # train_collector.collect(n_step=args.buffer_size) # log log_path = os.path.join(args.logdir, args.task, 'sac') writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(x): return x >= env.spec.reward_threshold # trainer result = offpolicy_trainer(policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer) assert stop_fn(result['best_reward']) train_collector.close() test_collector.close() if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}') collector.close()