Esempio n. 1
0
def rmse(root, index):
    times = [
        datetime.utcfromtimestamp(int(t)) for t in nc.getvar(root, 'time')[:]
    ]
    days = [t.date() for t in times]
    days.sort()
    days_index = [d.day for d in set(days)]
    days_amount = len(days_index)
    nc.getdim(root, 'diarying', days_amount)
    nc.sync(root)
    measurements = nc.getvar(root, 'measurements')
    estimated = nc.getvar(root, 'globalradiation')
    error_diff = nc.getvar(root, 'errordiff', 'f4', (
        'time',
        'yc_cut',
        'xc_cut',
    ), 4)
    error = nc.getvar(root, 'error', 'f4', (
        'time',
        'yc_cut',
        'xc_cut',
    ), 4)
    diary_error = nc.getvar(root, 'diaryerror', 'f4', (
        'diarying',
        'yc_cut',
        'xc_cut',
    ), 4)
    error_diff[:] = np.zeros(estimated.shape)
    error[:] = np.zeros(estimated.shape)
    diary_error[:] = np.zeros(
        (days_amount, estimated.shape[1], estimated.shape[2]))
    nc.sync(root)
    #the_max = measurements[:].max()
    error_diff[:,
               index, :] = measurements[:, index, :] - estimated[:, index, :]
    error[:, index, :] = np.abs(error_diff[:, index, :])
    nc.sync(root)
    max_value_in_day = np.zeros([days_amount]) + 1
    for i in range(len(days)):
        d_i = days_index.index(days[i].day)
        max_value_in_day[d_i] = measurements[
            i, index, 0] if max_value_in_day[d_i] < measurements[
                i, index, 0] else max_value_in_day[d_i]
        diary_error[d_i, index, :] += np.array([error_diff[i, index, 0]**2, 1])
    count = diary_error[:, index, 1]
    count[count == 0] = 1
    diary_error[:, index, 0] = np.sqrt(diary_error[:, index, 0] / count)
    diary_error[:, index,
                1] = diary_error[:, index, 0] / max_value_in_day * 100
    show("\rDiary RMS error: %.2f" % (diary_error[:, index, 1]).mean())
    for i in range(len(days)):
        d_i = days_index.index(days[i].day)
        error[i, index, 1] = error[i, index, 1] / max_value_in_day[d_i] * 100
    result = np.sum(error[:, index, 1]**2)
    result = np.sqrt(result / error.shape[0])
    show("Half-hour RMS error: %.2f \n" % result)
    #diary_error[:, index,1] = diary_error[:, index,0]
    nc.sync(root)
    nc.close(root)
Esempio n. 2
0
 def project_linke(self):
     logging.info("Projecting Linke's turbidity index... ")
     dts = map(lambda m: datetime(2014, m, 15), range(1, 13))
     linkes = map(lambda dt: linke.obtain(dt, compressed=True), dts)
     linkes = map(lambda l: linke.transform_data(l, self.lat[0],
                                                 self.lon[0]), linkes)
     linkes = np.vstack([[linkes]])
     nc.getdim(self.root, 'months', 12)
     linke_var = nc.getvar(self.root, 'linke', 'f4', ('months', 'yc', 'xc'))
     # The linkes / 20. uncompress the linke coefficients and save them as floats.
     linke_var[:] = linkes / 20.
Esempio n. 3
0
 def test_get_not_existing_dim_multiple_file(self):
     # check if get the dimension in a single file.
     root = nc.open('unittest0*.nc')[0]
     self.assertFalse(root.has_dimension('the_12th_dimension'))
     self.assertEquals(len(nc.getdim(root, 'the_12th_dimension', 123)), 5)
     self.assertTrue(root.has_dimension('the_12th_dimension'))
     nc.close(root)
Esempio n. 4
0
def dailyerrors(root, stations):
    times = [
        datetime.fromtimestamp(int(t)) for t in nc.getvar(root, 'time')[:]
    ]
    days = [t.date() for t in times]
    days.sort()
    days_index = [d.day for d in set(days)]
    days_index.sort()
    days_amount = len(days_index)
    nc.getdim(root, 'diarying', days_amount)
    nc.sync(root)
    measurements = nc.getvar(root, 'measurements')
    estimated = nc.getvar(root, 'globalradiation')
    error_diff = nc.getvar(root, 'errordiff', 'f4', (
        'time',
        'yc_cut',
        'xc_cut',
    ), 4)
    RMS_daily_error = nc.getvar(root, 'RMSdailyerror', 'f4', (
        'diarying',
        'yc_cut',
        'xc_cut',
    ), 4)
    BIAS_daily_error = nc.getvar(root, 'BIASdailyerror', 'f4', (
        'diarying',
        'yc_cut',
        'xc_cut',
    ), 4)
    error_diff[:] = np.zeros(estimated.shape)
    RMS_daily_error[:] = np.zeros(
        (days_amount, estimated.shape[1], estimated.shape[2]))
    BIAS_daily_error[:] = np.zeros(
        (days_amount, estimated.shape[1], estimated.shape[2]))
    nc.sync(root)
    for s in stations:
        index = stations.index(s)
        show('Station: %s \n' % stations[index])
        error_diff[:,
                   index, :] = measurements[:, index, :] - estimated[:,
                                                                     index, :]
        nc.sync(root)
        sum_value_in_day = np.zeros((days_amount))
        for i in range(len(days)):
            d_i = days_index.index(days[i].day)
            if not measurements[i, index, 0] == 0.0:
                sum_value_in_day[d_i] += measurements[i, index, 0]
                RMS_daily_error[d_i, index, :] += np.array(
                    [error_diff[i, index, 0]**2, 1])
                BIAS_daily_error[d_i, index, :] += error_diff[i, index, 0]
        count = RMS_daily_error[:, index, 1]
        count[count == 0] = 1
        RMS_daily_error[:, index, 0] = np.sqrt(
            RMS_daily_error[:, index, 0] / count) / sum_value_in_day * 100
        BIAS_daily_error[:, index, 0] = (BIAS_daily_error[:, index, 0] /
                                         count) / sum_value_in_day * 100
        RMS_daily_error[:, index, 1] = RMS_daily_error[:, index, 0]
        BIAS_daily_error[:, index, 1] = BIAS_daily_error[:, index, 0]
        print 'RMS :', RMS_daily_error[:, index, 0]
        print 'BIAS', BIAS_daily_error[:, index, 0]
        print 'sum value in day: ', sum_value_in_day[:]
        show("\rDiary RMS daily error: %.2f\n" %
             (RMS_daily_error[:, index, 0]).mean())

    nc.sync(root)
    nc.close(root)
Esempio n. 5
0
 def create_1px_dimensions(self, root):
     nc.getdim(root, 'xc_k', 1)
     nc.getdim(root, 'yc_k', 1)
     nc.getdim(root, 'time', 1)
Esempio n. 6
0
 def test_get_existing_dim_multiple_file(self):
     # check if get the dimension in a single file.
     root = nc.open('unittest0*.nc')[0]
     self.assertEquals(len(nc.getdim(root, 'time')), 5)
     nc.close(root)