Esempio n. 1
0
 def testVariablesSetDevice(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     # Force all Variables to reside on the device.
     with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
         darknet.darknet_19(inputs, num_classes)
     with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
         darknet.darknet_19(inputs, num_classes)
     for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                scope='on_cpu'):
         self.assertDeviceEqual(v.device, '/cpu:0')
     for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                scope='on_gpu'):
         self.assertDeviceEqual(v.device, '/gpu:0')
Esempio n. 2
0
 def testTrainEvalWithReuse(self):
     train_batch_size = 5
     eval_batch_size = 2
     height, width = 150, 150
     num_classes = 1000
     with self.test_session() as sess:
         train_inputs = tf.random_uniform(
             (train_batch_size, height, width, 3))
         darknet.darknet_19(train_inputs, num_classes)
         eval_inputs = tf.random_uniform(
             (eval_batch_size, height, width, 3))
         logits, _ = darknet.darknet_19(eval_inputs,
                                        num_classes,
                                        is_training=False,
                                        reuse=True)
         predictions = tf.argmax(logits, 1)
         sess.run(tf.global_variables_initializer())
         output = sess.run(predictions)
         self.assertEquals(output.shape, (eval_batch_size, ))
Esempio n. 3
0
 def testGlobalPool(self):
     batch_size = 2
     height, width = 448, 448
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, end_points = darknet.darknet_19(inputs, num_classes)
     self.assertTrue(logits.op.name.startswith('darknet_19/Logits'))
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     pre_pool = end_points[scope_prefix + 'Conv2D_18']
     self.assertListEqual(pre_pool.get_shape().as_list(),
                          [batch_size, 14, 14, 1024])
Esempio n. 4
0
 def testEvaluation(self):
     batch_size = 2
     height, width = 224, 224
     num_classes = 1000
     with self.test_session() as sess:
         eval_inputs = tf.random_uniform((batch_size, height, width, 3))
         logits, _ = darknet.darknet_19(eval_inputs,
                                        num_classes,
                                        is_training=False)
         predictions = tf.argmax(logits, 1)
         sess.run(tf.global_variables_initializer())
         output = sess.run(predictions)
         self.assertEquals(output.shape, (batch_size, ))
Esempio n. 5
0
 def testBuildLogits(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, end_points = darknet.darknet_19(inputs, num_classes)
     predictions = end_points['Predictions']
     self.assertTrue(logits.op.name.startswith('darknet_19/Logits'))
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     self.assertTrue(
         predictions.op.name.startswith('darknet_19/Predictions'))
     self.assertListEqual(predictions.get_shape().as_list(),
                          [batch_size, num_classes])
Esempio n. 6
0
 def testUnknownBatchSize(self):
     batch_size = 1
     height, width = 224, 224
     num_classes = 1000
     with self.test_session() as sess:
         inputs = tf.placeholder(tf.float32, (None, height, width, 3))
         logits, _ = darknet.darknet_19(inputs, num_classes)
         self.assertTrue(logits.op.name.startswith('darknet_19/Logits'))
         self.assertListEqual(logits.get_shape().as_list(),
                              [None, num_classes])
         images = tf.random_uniform((batch_size, height, width, 3))
         sess.run(tf.global_variables_initializer())
         output = sess.run(logits, {inputs: images.eval()})
         self.assertEquals(output.shape, (batch_size, num_classes))
Esempio n. 7
0
 def testAllEndPointsShapes(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     _, end_points = darknet.darknet_19(inputs, num_classes)
     endpoints_shapes = {
         scope_prefix + 'Conv2D_1': [batch_size, 224, 224, 32],
         scope_prefix + 'MaxPool_1': [batch_size, 112, 112, 32],
         #
         scope_prefix + 'Conv2D_2': [batch_size, 112, 112, 64],
         scope_prefix + 'MaxPool_2': [batch_size, 56, 56, 64],
         #
         scope_prefix + 'Conv2D_3': [batch_size, 56, 56, 128],
         scope_prefix + 'Conv2D_4': [batch_size, 56, 56, 64],
         scope_prefix + 'Conv2D_5': [batch_size, 56, 56, 128],
         scope_prefix + 'MaxPool_3': [batch_size, 28, 28, 128],
         #
         scope_prefix + 'Conv2D_6': [batch_size, 28, 28, 256],
         scope_prefix + 'Conv2D_7': [batch_size, 28, 28, 128],
         scope_prefix + 'Conv2D_8': [batch_size, 28, 28, 256],
         scope_prefix + 'MaxPool_4': [batch_size, 14, 14, 256],
         #
         scope_prefix + 'Conv2D_9': [batch_size, 14, 14, 512],
         scope_prefix + 'Conv2D_10': [batch_size, 14, 14, 256],
         scope_prefix + 'Conv2D_11': [batch_size, 14, 14, 512],
         scope_prefix + 'Conv2D_12': [batch_size, 14, 14, 256],
         scope_prefix + 'Conv2D_13': [batch_size, 14, 14, 512],
         scope_prefix + 'MaxPool_5': [batch_size, 7, 7, 512],
         #
         scope_prefix + 'Conv2D_14': [batch_size, 7, 7, 1024],
         scope_prefix + 'Conv2D_15': [batch_size, 7, 7, 512],
         scope_prefix + 'Conv2D_16': [batch_size, 7, 7, 1024],
         scope_prefix + 'Conv2D_17': [batch_size, 7, 7, 512],
         scope_prefix + 'Conv2D_18': [batch_size, 7, 7, 1024],
         #
         'Conv2D_19': [batch_size, 7, 7, num_classes],
         # Logits and predictions
         'global_pool': [batch_size, 1, 1, num_classes],
         'Logits': [batch_size, num_classes],
         'Predictions': [batch_size, num_classes]
     }
     self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
     for endpoint_name in endpoints_shapes:
         expected_shape = endpoints_shapes[endpoint_name]
         self.assertTrue(endpoint_name in end_points)
         self.assertListEqual(
             end_points[endpoint_name].get_shape().as_list(),
             expected_shape)
Esempio n. 8
0
 def testGlobalPoolUnknownImageShape(self):
     batch_size = 2
     height, width = 448, 448
     num_classes = 1000
     with self.test_session() as sess:
         inputs = tf.placeholder(tf.float32, (batch_size, None, None, 3))
         logits, end_points = darknet.darknet_19(inputs, num_classes)
         self.assertTrue(logits.op.name.startswith('darknet_19/Logits'))
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, num_classes])
         pre_pool = end_points[scope_prefix + 'Conv2D_18']
         images = tf.random_uniform((batch_size, height, width, 3))
         sess.run(tf.global_variables_initializer())
         logits_out, pre_pool_out = sess.run([logits, pre_pool],
                                             {inputs: images.eval()})
         self.assertTupleEqual(logits_out.shape, (batch_size, num_classes))
         self.assertTupleEqual(pre_pool_out.shape,
                               (batch_size, 14, 14, 1024))