def __init__(self, scope=None): with tf.variable_scope(scope, reuse=True): colour_channels = 1 if opt.grey_scale else 3 input_uint8_1 = tf.placeholder( tf.uint8, [1, opt.img_height, opt.img_width, colour_channels], name='raw_input_1') input_uint8_1r = tf.placeholder( tf.uint8, [1, opt.img_height, opt.img_width, colour_channels], name='raw_input_1r') input_uint8_2 = tf.placeholder( tf.uint8, [1, opt.img_height, opt.img_width, colour_channels], name='raw_input_2') input_uint8_2r = tf.placeholder( tf.uint8, [1, opt.img_height, opt.img_width, colour_channels], name='raw_input_2r') input_intrinsic = tf.placeholder(tf.float32, [3, 3]) cam2pix, pix2cam = get_multi_scale_intrinsics(input_intrinsic, opt.num_scales) cam2pix = tf.expand_dims(cam2pix, axis=0) pix2cam = tf.expand_dims(pix2cam, axis=0) input_1 = preprocess_image(input_uint8_1) input_2 = preprocess_image(input_uint8_2) input_1r = preprocess_image(input_uint8_1r) input_2r = preprocess_image(input_uint8_2r) feature1_disp = feature_pyramid_disp(input_1, reuse=True) feature1r_disp = feature_pyramid_disp(input_1r, reuse=True) feature2_disp = feature_pyramid_disp(input_2, reuse=True) feature2r_disp = feature_pyramid_disp(input_2r, reuse=True) feature1_flow = feature_pyramid_flow(input_1, reuse=True) feature2_flow = feature_pyramid_flow(input_2, reuse=True) pred_disp = disp_godard( input_1, input_1r, feature1_disp, feature1r_disp, opt, is_training=False) pred_disp_rev = disp_godard( input_2, input_2r, feature2_disp, feature2r_disp, opt, is_training=False) pred_poses = pose_exp_net(input_1, input_2) optical_flows = construct_model_pwc_full( input_1, input_2, feature1_flow, feature2_flow) optical_flows_rev = construct_model_pwc_full( input_2, input_1, feature2_flow, feature1_flow) s = 0 occu_mask = tf.clip_by_value( transformerFwd( tf.ones( shape=[ 1, opt.img_height // (2**s), opt.img_width // (2**s), 1 ], dtype='float32'), optical_flows_rev[s], [opt.img_height // (2**s), opt.img_width // (2**s)]), clip_value_min=0.0, clip_value_max=1.0) depth_flow, pose_mat, disp1_trans, small_mask = inverse_warp_new( 1.0 / pred_disp[0][:, :, :, 0:1], 1.0 / pred_disp_rev[0][:, :, :, 0:1], pred_poses, cam2pix[:, 0, :, :], pix2cam[:, 0, :, :], optical_flows[0], occu_mask) flow_diff = tf.sqrt( tf.reduce_sum( tf.square(depth_flow - optical_flows[0]), axis=3, keep_dims=True)) flow_diff_mask = tf.cast(flow_diff < (opt.flow_diff_threshold), tf.float32) occu_region = tf.cast(occu_mask < 0.5, tf.float32) ref_exp_mask = tf.clip_by_value( flow_diff_mask + occu_region, clip_value_min=0.0, clip_value_max=1.0) self.input_1 = input_uint8_1 self.input_2 = input_uint8_2 self.input_r = input_uint8_1r self.input_2r = input_uint8_2r self.input_intrinsic = input_intrinsic self.pred_pose_mat = pose_mat[0, :, :] self.pred_flow_rigid = depth_flow self.pred_flow_optical = optical_flows[0] self.pred_disp = pred_disp[0][:, :, :, 0:1] self.pred_disp2 = disp1_trans*0.0 + \ transformer_old(pred_disp_rev[0][:,:,:,0:1], optical_flows[0], [opt.img_height, opt.img_width])*(1.0-0.0) self.pred_mask = 1.0 - ref_exp_mask
def __init__(self, scope=None): with tf.variable_scope(scope, reuse=True): colour_channels = 1 if opt.grey_scale else 3 input_uint8_1 = tf.placeholder( tf.uint8, [1, opt.img_height, opt.img_width, colour_channels], name='raw_input_1') input_uint8_1r = tf.placeholder( tf.uint8, [1, opt.img_height, opt.img_width, colour_channels], name='raw_input_1r') input_uint8_2 = tf.placeholder( tf.uint8, [1, opt.img_height, opt.img_width, colour_channels], name='raw_input_2') input_uint8_2r = tf.placeholder( tf.uint8, [1, opt.img_height, opt.img_width, colour_channels], name='raw_input_2r') input_intrinsic = tf.placeholder(tf.float32, [3, 3]) cam2pix, pix2cam = get_multi_scale_intrinsics(input_intrinsic, opt.num_scales) cam2pix = tf.expand_dims(cam2pix, axis=0) pix2cam = tf.expand_dims(pix2cam, axis=0) input_1 = preprocess_image(input_uint8_1) input_2 = preprocess_image(input_uint8_2) input_1r = preprocess_image(input_uint8_1r) input_2r = preprocess_image(input_uint8_2r) feature1_disp = feature_pyramid_disp(input_1, reuse=True) feature1r_disp = feature_pyramid_disp(input_1r, reuse=True) feature1_flow = feature_pyramid_flow(input_1, reuse=True) feature2_flow = feature_pyramid_flow(input_2, reuse=True) pred_disp = disp_godard( input_1, input_1r, feature1_disp, feature1r_disp, opt, is_training=False) pred_poses = pose_exp_net(input_1, input_2) optical_flows = construct_model_pwc_full( input_1, input_2, feature1_flow, feature2_flow) s = 0 depth_flow, pose_mat = inverse_warp( 1.0 / pred_disp[s][:, :, :, 0:1], pred_poses, cam2pix[:, s, :, :], ## [batchsize, scale, 3, 3] pix2cam[:, s, :, :]) self.input_1 = input_uint8_1 self.input_2 = input_uint8_2 self.input_r = input_uint8_1r self.input_2r = input_uint8_2r self.input_intrinsic = input_intrinsic self.pred_flow_rigid = depth_flow self.pred_flow_optical = optical_flows[0] self.pred_disp = pred_disp[0][:, :, :, 0:1] self.pred_pose_mat = pose_mat[0, :, :] # Placeholder created for interface consistency self.pred_disp2 = tf.constant(0.0) self.pred_mask = tf.constant(0.0)
def __init__(self, image1=None, image2=None, image1r=None, image2r=None, cam2pix=None, pix2cam=None, reuse_scope=False, scope=None): summaries = [] batch_size, H, W, color_channels = map(int, image1.get_shape()[0:4]) with tf.variable_scope(scope, reuse=reuse_scope): feature1_flow = feature_pyramid_flow(image1, reuse=False) feature2_flow = feature_pyramid_flow(image2, reuse=True) feature1_disp = feature_pyramid_disp(image1, reuse=False) feature1r_disp = feature_pyramid_disp(image1r, reuse=True) pred_disp, stereo_smooth_loss = disp_godard( image1, image1r, feature1_disp, feature1r_disp, opt, is_training=True) pred_depth = [1. / d for d in pred_disp] pred_poses = pose_exp_net(image1, image2) optical_flows_rev = construct_model_pwc_full( image2, image1, feature2_flow, feature1_flow) with tf.variable_scope(scope, reuse=True): feature2_disp = feature_pyramid_disp(image2, reuse=True) feature2r_disp = feature_pyramid_disp(image2r, reuse=True) pred_disp_rev = disp_godard( image2, image2r, feature2_disp, feature2r_disp, opt, is_training=False) optical_flows = construct_model_pwc_full( image1, image2, feature1_flow, feature2_flow) occu_masks = [ tf.clip_by_value( transformerFwd( tf.ones( shape=[batch_size, H / (2**s), W / (2**s), 1], dtype='float32'), flowr, [H / (2**s), W / (2**s)]), clip_value_min=0.0, clip_value_max=1.0) for s, flowr in enumerate(optical_flows_rev) ] _, pose_mat, _, _ = inverse_warp_new( 1.0 / pred_disp[0][:, :, :, 0:1], 1.0 / pred_disp_rev[0][:, :, :, 0:1], pred_poses, cam2pix[:, 0, :, :], pix2cam[:, 0, :, :], optical_flows[0], occu_masks[0]) pixel_loss_depth = 0 pixel_loss_optical = 0 exp_loss = 0 flow_smooth_loss = 0 flow_consist_loss = 0 tgt_image_all = [] src_image_all = [] proj_image_depth_all = [] proj_error_depth_all = [] flyout_map_all = [] for s in range(opt.num_scales): occu_mask = occu_masks[s] # Scale the source and target images for computing loss at the # according scale. curr_tgt_image = tf.image.resize_area( image1, [int(opt.img_height / (2**s)), int(opt.img_width / (2**s))]) curr_src_image = tf.image.resize_area( image2, [int(opt.img_height / (2**s)), int(opt.img_width / (2**s))]) depth_flow, pose_mat = inverse_warp( pred_depth[s][:, :, :, 0:1], tf.stop_gradient(pose_mat), cam2pix[:, s, :, :], ## [batchsize, scale, 3, 3] pix2cam[:, s, :, :]) depth_flow_orig, _ = inverse_warp( tf.stop_gradient(pred_depth[s][:, :, :, 0:1]), pred_poses, cam2pix[:, s, :, :], ## [batchsize, scale, 3, 3] pix2cam[:, s, :, :]) flow_diff = tf.sqrt( tf.reduce_sum( tf.square(depth_flow - optical_flows[s]), axis=3, keep_dims=True)) flow_diff_mask = tf.cast( flow_diff < (opt.flow_diff_threshold / 2**s), tf.float32) occu_region = tf.cast(occu_mask < 0.5, tf.float32) ref_exp_mask = tf.clip_by_value( flow_diff_mask + occu_region, clip_value_min=0.0, clip_value_max=1.0) occu_mask_avg = tf.reduce_mean(occu_mask) curr_proj_image_depth = transformer_old(curr_src_image, depth_flow, [H / (2**s), W / (2**s)]) curr_proj_error_depth = tf.abs(curr_proj_image_depth - curr_tgt_image) * ref_exp_mask pixel_loss_depth += (1.0 - opt.ssim_weight) * tf.reduce_mean( curr_proj_error_depth * occu_mask) / occu_mask_avg curr_proj_image_depth_orig = transformer_old( curr_src_image, depth_flow_orig, [H / (2**s), W / (2**s)]) curr_proj_error_depth_orig = tf.abs(curr_proj_image_depth_orig - curr_tgt_image) * ref_exp_mask pixel_loss_depth += (1.0 - opt.ssim_weight) * tf.reduce_mean( curr_proj_error_depth_orig * occu_mask) / occu_mask_avg curr_proj_image_optical = transformer_old( curr_src_image, optical_flows[s], [H / (2**s), W / (2**s)]) curr_proj_error_optical = tf.abs(curr_proj_image_optical - curr_tgt_image) pixel_loss_optical += (1.0 - opt.ssim_weight) * tf.reduce_mean( curr_proj_error_optical * occu_mask) / occu_mask_avg curr_flyout_map = occu_mask if opt.ssim_weight > 0: pixel_loss_depth += opt.ssim_weight * tf.reduce_mean( SSIM(curr_proj_image_depth * occu_mask * ref_exp_mask, curr_tgt_image * occu_mask * ref_exp_mask)) / occu_mask_avg pixel_loss_depth += opt.ssim_weight * tf.reduce_mean( SSIM(curr_proj_image_depth_orig * occu_mask * ref_exp_mask, curr_tgt_image * occu_mask * ref_exp_mask)) / occu_mask_avg pixel_loss_optical += opt.ssim_weight * tf.reduce_mean( SSIM(curr_proj_image_optical * occu_mask, curr_tgt_image * occu_mask)) / occu_mask_avg # flow_smooth_loss += opt.flow_smooth_weight * cal_grad2_error_mask( optical_flows[s] / 20.0, curr_tgt_image, 1.0, 1.0 - ref_exp_mask) depth_flow_stop = tf.stop_gradient(depth_flow) flow_consist_loss += opt.flow_consist_weight * charbonnier_loss( depth_flow_stop - optical_flows[s], ref_exp_mask) tgt_image_all.append(curr_tgt_image) src_image_all.append(curr_src_image) proj_image_depth_all.append(curr_proj_image_depth) proj_error_depth_all.append(curr_proj_error_depth) flyout_map_all.append(curr_flyout_map) self.loss = ( 10.0 * pixel_loss_depth + stereo_smooth_loss ) + pixel_loss_optical + flow_smooth_loss + flow_consist_loss summaries.append(tf.summary.scalar("total_loss", self.loss)) summaries.append( tf.summary.scalar("pixel_loss_depth", pixel_loss_depth)) summaries.append( tf.summary.scalar("pixel_loss_optical", pixel_loss_optical)) summaries.append(tf.summary.scalar("exp_loss", exp_loss)) summaries.append( tf.summary.scalar("stereo_smooth_loss", stereo_smooth_loss)) tf.summary.image("pred_disp", pred_disp[0][:, :, :, 0:1]) s = 0 tf.summary.histogram("pose_0-2", pred_poses[:, 0:3]) tf.summary.histogram("pose_3-5", pred_poses[:, 3:6]) tf.summary.image('scale%d_depth_image' % s, pred_depth[s][:, :, :, 0:1]) tf.summary.image('scale%d_right_disparity_image' % s, pred_disp[s][:, :, :, 1:2]) tf.summary.image('scale%d_target_image' % s, \ deprocess_image(tgt_image_all[s])) tf.summary.image('scale%d_src_image' % s, \ deprocess_image(src_image_all[s])) tf.summary.image('scale_projected_image', deprocess_image(proj_image_depth_all[s])) tf.summary.image('scale_proj_error_error', proj_error_depth_all[s]) tf.summary.image('scale_flyout_mask', flyout_map_all[s]) self.summ_op = tf.summary.merge(summaries)
def __init__(self, image1=None, image2=None, image1r=None, image2r=None, cam2pix=None, pix2cam=None, reuse_scope=False, scope=None): summaries = [] batch_size, H, W, color_channels = map(int, image1.get_shape()[0:4]) with tf.variable_scope(scope, reuse=reuse_scope): feature1_flow = feature_pyramid_flow(image1, reuse=False) feature2_flow = feature_pyramid_flow(image2, reuse=True) feature1_disp = feature_pyramid_disp(image1, reuse=False) feature1r_disp = feature_pyramid_disp(image1r, reuse=True) pred_disp, stereo_smooth_loss = disp_godard( image1, image1r, feature1_disp, feature1r_disp, opt, is_training=True) pred_depth = [1. / d for d in pred_disp] pred_poses = pose_exp_net(image1, image2) optical_flows_rev = construct_model_pwc_full( image2, image1, feature2_flow, feature1_flow) occu_masks = [ tf.clip_by_value( transformerFwd( tf.ones( shape=[batch_size, H / (2**s), W / (2**s), 1], dtype='float32'), flowr, [H / (2**s), W / (2**s)]), clip_value_min=0.0, clip_value_max=1.0) for s, flowr in enumerate(optical_flows_rev) ] pixel_loss_depth = 0 pixel_loss_optical = 0 exp_loss = 0 flow_smooth_loss = 0 tgt_image_all = [] src_image_all = [] proj_image_depth_all = [] proj_error_depth_all = [] exp_mask_stack_all = [] flyout_map_all = [] for s in range(opt.num_scales): # Scale the source and target images for computing loss at the # according scale. curr_tgt_image = tf.image.resize_area( image1, [int(opt.img_height / (2**s)), int(opt.img_width / (2**s))]) curr_src_image = tf.image.resize_area( image2, [int(opt.img_height / (2**s)), int(opt.img_width / (2**s))]) depth_flow, pose_mat = inverse_warp( pred_depth[s][:, :, :, 0:1], pred_poses, cam2pix[:, s, :, :], ## [batchsize, scale, 3, 3] pix2cam[:, s, :, :]) occu_mask = occu_masks[s] occu_mask_avg = tf.reduce_mean(occu_mask) curr_proj_image_depth = transformer_old(curr_src_image, depth_flow, [H / (2**s), W / (2**s)]) curr_proj_error_depth = tf.abs(curr_proj_image_depth - curr_tgt_image) pixel_loss_depth += (1.0 - opt.ssim_weight) * tf.reduce_mean( curr_proj_error_depth * occu_mask) / occu_mask_avg curr_flyout_map = occu_mask if opt.ssim_weight > 0: pixel_loss_depth += opt.ssim_weight * tf.reduce_mean( SSIM(curr_proj_image_depth * occu_mask, curr_tgt_image * occu_mask)) / occu_mask_avg tgt_image_all.append(curr_tgt_image) src_image_all.append(curr_src_image) proj_image_depth_all.append(curr_proj_image_depth) proj_error_depth_all.append(curr_proj_error_depth) flyout_map_all.append(curr_flyout_map) self.loss = (10.0 * pixel_loss_depth + stereo_smooth_loss) summaries.append(tf.summary.scalar("total_loss", self.loss)) summaries.append( tf.summary.scalar("pixel_loss_depth", pixel_loss_depth)) summaries.append( tf.summary.scalar("pixel_loss_optical", pixel_loss_optical)) summaries.append(tf.summary.scalar("exp_loss", exp_loss)) summaries.append( tf.summary.scalar("stereo_smooth_loss", stereo_smooth_loss)) tf.summary.image("pred_disp", pred_disp[0][:, :, :, 0:1]) # for s in range(opt.num_scales): s = 0 tf.summary.histogram("pose_0-2", pred_poses[:, 0:3]) tf.summary.histogram("pose_3-5", pred_poses[:, 3:6]) tf.summary.image('scale%d_depth_image' % s, pred_depth[s][:, :, :, 0:1]) tf.summary.image('scale%d_right_disparity_image' % s, pred_disp[s][:, :, :, 1:2]) tf.summary.image('scale%d_target_image' % s, \ deprocess_image(tgt_image_all[s])) tf.summary.image('scale%d_src_image' % s, \ deprocess_image(src_image_all[s])) tf.summary.image('scale_projected_image', deprocess_image(proj_image_depth_all[s])) tf.summary.image('scale_proj_error_error', proj_error_depth_all[s]) tf.summary.image('scale_flyout_mask', flyout_map_all[s]) self.summ_op = tf.summary.merge(summaries)