Esempio n. 1
0
    def generate(self):

        self.net = YoloBody(len(self.anchors[0]), len(self.class_names)).eval()

        # 加快模型训练的效率
        print('Loading weights into state dict...')
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        state_dict = torch.load(self.model_path, map_location=device)
        self.net.load_state_dict(state_dict)

        if self.cuda:
            os.environ["CUDA_VISIBLE_DEVICES"] = '0'
            self.net = nn.DataParallel(self.net)
            self.net = self.net.cuda()

        print('Finished!')

        self.yolo_decodes = []
        self.anchors_mask = [[3, 4, 5], [1, 2, 3]]
        for i in range(2):
            self.yolo_decodes.append(
                DecodeBox(
                    np.reshape(self.anchors, [-1, 2])[self.anchors_mask[i]],
                    len(self.class_names),
                    (self.model_image_size[1], self.model_image_size[0])))

        print('{} model, anchors, and classes loaded.'.format(self.model_path))
        # 画框设置不同的颜色
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
Esempio n. 2
0
    #-------------------------------#
    #   Dataloder的使用
    #-------------------------------#
    Use_Data_Loader = True

    annotation_path = '2007_train.txt'
    #-------------------------------#
    #   获得先验框和类
    #-------------------------------#
    anchors_path = 'model_data/yolo_anchors.txt'
    classes_path = 'model_data/voc_classes.txt'
    class_names = get_classes(classes_path)
    anchors = get_anchors(anchors_path)
    num_classes = len(class_names)
    # 创建模型
    model = YoloBody(len(anchors[0]), num_classes)
    #-------------------------------------------#
    #   权值文件的下载请看README
    #-------------------------------------------#
    model_path = "model_data/yolov4_tiny_weights_coco.pth"
    # 加快模型训练的效率
    print('Loading weights into state dict...')
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model_dict = model.state_dict()
    pretrained_dict = torch.load(model_path, map_location=device)
    pretrained_dict = {
        k: v
        for k, v in pretrained_dict.items()
        if np.shape(model_dict[k]) == np.shape(v)
    }
    model_dict.update(pretrained_dict)
Esempio n. 3
0
class YOLO(object):
    _defaults = {
        #"model_path"        : 'model_data/yolov4_tiny_weights_voc.pth',
        #"model_path": 'model_data/voc_self_20.pth',
        "model_path": 'model_data/bimac_3.pth',
        "anchors_path": 'model_data/yolo_anchors.txt',
        #"classes_path"      : 'model_data/voc_classes.txt',
        "classes_path": 'model_data/bimac_classes.txt',
        "model_image_size": (416, 416, 3),
        "confidence": 0.5,
        "iou": 0.3,
        "cuda": True,
        #---------------------------------------------------------------------#
        #   该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
        #   在多次测试后,发现关闭letterbox_image直接resize的效果更好
        #---------------------------------------------------------------------#
        "letterbox_image": False,
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    #---------------------------------------------------#
    #   初始化YOLO
    #---------------------------------------------------#
    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults)
        self.class_names = self._get_class()
        self.anchors = self._get_anchors()
        self.generate()

    #---------------------------------------------------#
    #   获得所有的分类
    #---------------------------------------------------#
    def _get_class(self):
        classes_path = os.path.expanduser(self.classes_path)
        with open(classes_path) as f:
            class_names = f.readlines()
        class_names = [c.strip() for c in class_names]
        return class_names

    #---------------------------------------------------#
    #   获得所有的先验框
    #---------------------------------------------------#
    def _get_anchors(self):
        anchors_path = os.path.expanduser(self.anchors_path)
        with open(anchors_path) as f:
            anchors = f.readline()
        anchors = [float(x) for x in anchors.split(',')]
        return np.array(anchors).reshape([-1, 3, 2])

    #---------------------------------------------------#
    #   生成模型
    #---------------------------------------------------#
    def generate(self):
        #---------------------------------------------------#
        #   建立yolov4_tiny模型
        #---------------------------------------------------#
        self.net = YoloBody(len(self.anchors[0]), len(self.class_names)).eval()

        #---------------------------------------------------#
        #   载入yolov4_tiny模型的权重
        #---------------------------------------------------#
        print('Loading weights into state dict...')
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        state_dict = torch.load(self.model_path, map_location=device)
        self.net.load_state_dict(state_dict)
        print('Finished!')

        if self.cuda:
            os.environ["CUDA_VISIBLE_DEVICES"] = '0'
            self.net = nn.DataParallel(self.net)
            self.net = self.net.cuda()

        #---------------------------------------------------#
        #   建立特征层解码用的工具
        #---------------------------------------------------#
        self.yolo_decodes = []
        self.anchors_mask = [[3, 4, 5], [1, 2, 3]]
        for i in range(2):
            self.yolo_decodes.append(
                DecodeBox(
                    np.reshape(self.anchors, [-1, 2])[self.anchors_mask[i]],
                    len(self.class_names),
                    (self.model_image_size[1], self.model_image_size[0])))

        print('{} model, anchors, and classes loaded.'.format(self.model_path))
        # 画框设置不同的颜色
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))

    #---------------------------------------------------#
    #   检测图片
    #---------------------------------------------------#
    def detect_image(self, image):
        image_shape = np.array(np.shape(image)[0:2])

        #---------------------------------------------------------#
        #   给图像增加灰条,实现不失真的resize
        #   也可以直接resize进行识别
        #---------------------------------------------------------#
        if self.letterbox_image:
            crop_img = np.array(
                letterbox_image(
                    image,
                    (self.model_image_size[1], self.model_image_size[0])))
        else:
            crop_img = image.convert('RGB')
            crop_img = crop_img.resize(
                (self.model_image_size[1], self.model_image_size[0]),
                Image.BICUBIC)
        photo = np.array(crop_img, dtype=np.float32) / 255.0
        photo = np.transpose(photo, (2, 0, 1))
        #---------------------------------------------------------#
        #   添加上batch_size维度
        #---------------------------------------------------------#
        images = [photo]

        with torch.no_grad():
            images = torch.from_numpy(np.asarray(images))
            if self.cuda:
                images = images.cuda()

            #---------------------------------------------------------#
            #   将图像输入网络当中进行预测!
            #---------------------------------------------------------#
            outputs = self.net(images)
            output_list = []
            for i in range(2):
                output_list.append(self.yolo_decodes[i](outputs[i]))

            #---------------------------------------------------------#
            #   将预测框进行堆叠,然后进行非极大抑制
            #---------------------------------------------------------#
            output = torch.cat(output_list, 1)
            batch_detections = non_max_suppression(output,
                                                   len(self.class_names),
                                                   conf_thres=self.confidence,
                                                   nms_thres=self.iou)

            #---------------------------------------------------------#
            #   如果没有检测出物体,返回原图
            #---------------------------------------------------------#
            try:
                batch_detections = batch_detections[0].cpu().numpy()
            except:
                return image

            #---------------------------------------------------------#
            #   对预测框进行得分筛选
            #---------------------------------------------------------#
            top_index = batch_detections[:,
                                         4] * batch_detections[:,
                                                               5] > self.confidence
            top_conf = batch_detections[top_index,
                                        4] * batch_detections[top_index, 5]
            top_label = np.array(batch_detections[top_index, -1], np.int32)
            top_bboxes = np.array(batch_detections[top_index, :4])
            top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(
                top_bboxes[:, 0],
                -1), np.expand_dims(top_bboxes[:, 1], -1), np.expand_dims(
                    top_bboxes[:, 2],
                    -1), np.expand_dims(top_bboxes[:, 3], -1)

            #-----------------------------------------------------------------#
            #   在图像传入网络预测前会进行letterbox_image给图像周围添加灰条
            #   因此生成的top_bboxes是相对于有灰条的图像的
            #   我们需要对其进行修改,去除灰条的部分。
            #-----------------------------------------------------------------#
            if self.letterbox_image:
                boxes = yolo_correct_boxes(
                    top_ymin, top_xmin, top_ymax, top_xmax,
                    np.array(
                        [self.model_image_size[0], self.model_image_size[1]]),
                    image_shape)
            else:
                top_xmin = top_xmin / self.model_image_size[1] * image_shape[1]
                top_ymin = top_ymin / self.model_image_size[0] * image_shape[0]
                top_xmax = top_xmax / self.model_image_size[1] * image_shape[1]
                top_ymax = top_ymax / self.model_image_size[0] * image_shape[0]
                boxes = np.concatenate(
                    [top_ymin, top_xmin, top_ymax, top_xmax], axis=-1)

        font = ImageFont.truetype(font='model_data/simhei.ttf',
                                  size=np.floor(3e-2 * np.shape(image)[1] +
                                                0.5).astype('int32'))

        thickness = max((np.shape(image)[0] + np.shape(image)[1]) //
                        self.model_image_size[0], 1)

        for i, c in enumerate(top_label):
            predicted_class = self.class_names[c]
            score = top_conf[i]

            top, left, bottom, right = boxes[i]
            top = top - 5
            left = left - 5
            bottom = bottom + 5
            right = right + 5

            top = max(0, np.floor(top + 0.5).astype('int32'))
            left = max(0, np.floor(left + 0.5).astype('int32'))
            bottom = min(
                np.shape(image)[0],
                np.floor(bottom + 0.5).astype('int32'))
            right = min(
                np.shape(image)[1],
                np.floor(right + 0.5).astype('int32'))

            # 画框框
            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)
            label = label.encode('utf-8')
            print(label, top, left, bottom, right)

            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            for i in range(thickness):
                draw.rectangle([left + i, top + i, right - i, bottom - i],
                               outline=self.colors[self.class_names.index(
                                   predicted_class)])
            draw.rectangle(
                [tuple(text_origin),
                 tuple(text_origin + label_size)],
                fill=self.colors[self.class_names.index(predicted_class)])
            draw.text(text_origin,
                      str(label, 'UTF-8'),
                      fill=(0, 0, 0),
                      font=font)
            del draw
        return image
Esempio n. 4
0
class YOLO(object):
    _defaults = {
        "model_path": 'model_data/yolov4_tiny_weights_coco.pth',
        "anchors_path": 'model_data/yolo_anchors.txt',
        "classes_path": 'model_data/coco_classes.txt',
        "model_image_size": (416, 416, 3),
        "confidence": 0.5,
        "iou": 0.3,
        "cuda": True
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    #---------------------------------------------------#
    #   初始化YOLO
    #---------------------------------------------------#
    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults)
        self.class_names = self._get_class()
        self.anchors = self._get_anchors()
        self.generate()

    #---------------------------------------------------#
    #   获得所有的分类
    #---------------------------------------------------#
    def _get_class(self):
        classes_path = os.path.expanduser(self.classes_path)
        with open(classes_path) as f:
            class_names = f.readlines()
        class_names = [c.strip() for c in class_names]
        return class_names

    #---------------------------------------------------#
    #   获得所有的先验框
    #---------------------------------------------------#
    def _get_anchors(self):
        anchors_path = os.path.expanduser(self.anchors_path)
        with open(anchors_path) as f:
            anchors = f.readline()
        anchors = [float(x) for x in anchors.split(',')]
        return np.array(anchors).reshape([-1, 3, 2])

    #---------------------------------------------------#
    #   获得所有的分类
    #---------------------------------------------------#
    def generate(self):

        self.net = YoloBody(len(self.anchors[0]), len(self.class_names)).eval()

        # 加快模型训练的效率
        print('Loading weights into state dict...')
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        state_dict = torch.load(self.model_path, map_location=device)
        self.net.load_state_dict(state_dict)

        if self.cuda:
            os.environ["CUDA_VISIBLE_DEVICES"] = '0'
            self.net = nn.DataParallel(self.net)
            self.net = self.net.cuda()

        print('Finished!')

        self.yolo_decodes = []
        self.anchors_mask = [[3, 4, 5], [1, 2, 3]]
        for i in range(2):
            self.yolo_decodes.append(
                DecodeBox(
                    np.reshape(self.anchors, [-1, 2])[self.anchors_mask[i]],
                    len(self.class_names),
                    (self.model_image_size[1], self.model_image_size[0])))

        print('{} model, anchors, and classes loaded.'.format(self.model_path))
        # 画框设置不同的颜色
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))

    #---------------------------------------------------#
    #   检测图片
    #---------------------------------------------------#
    def detect_image(self, image):
        image_shape = np.array(np.shape(image)[0:2])

        crop_img = np.array(
            letterbox_image(
                image, (self.model_image_size[1], self.model_image_size[0])))
        photo = np.array(crop_img, dtype=np.float32)
        photo /= 255.0
        photo = np.transpose(photo, (2, 0, 1))
        photo = photo.astype(np.float32)
        images = []
        images.append(photo)
        images = np.asarray(images)

        with torch.no_grad():
            images = torch.from_numpy(images)
            if self.cuda:
                images = images.cuda()
            outputs = self.net(images)

        output_list = []
        for i in range(2):
            output_list.append(self.yolo_decodes[i](outputs[i]))
        output = torch.cat(output_list, 1)
        batch_detections = non_max_suppression(output,
                                               len(self.class_names),
                                               conf_thres=self.confidence,
                                               nms_thres=self.iou)
        try:
            batch_detections = batch_detections[0].cpu().numpy()
        except:
            return image

        top_index = batch_detections[:,
                                     4] * batch_detections[:,
                                                           5] > self.confidence
        top_conf = batch_detections[top_index, 4] * batch_detections[top_index,
                                                                     5]
        top_label = np.array(batch_detections[top_index, -1], np.int32)
        top_bboxes = np.array(batch_detections[top_index, :4])
        top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(
            top_bboxes[:, 0],
            -1), np.expand_dims(top_bboxes[:, 1], -1), np.expand_dims(
                top_bboxes[:, 2], -1), np.expand_dims(top_bboxes[:, 3], -1)

        # 去掉灰条
        boxes = yolo_correct_boxes(
            top_ymin, top_xmin, top_ymax, top_xmax,
            np.array([self.model_image_size[0], self.model_image_size[1]]),
            image_shape)

        font = ImageFont.truetype(font='model_data/simhei.ttf',
                                  size=np.floor(3e-2 * np.shape(image)[1] +
                                                0.5).astype('int32'))

        thickness = (np.shape(image)[0] +
                     np.shape(image)[1]) // self.model_image_size[0]

        for i, c in enumerate(top_label):
            predicted_class = self.class_names[c]
            score = top_conf[i]

            top, left, bottom, right = boxes[i]
            top = top - 5
            left = left - 5
            bottom = bottom + 5
            right = right + 5

            top = max(0, np.floor(top + 0.5).astype('int32'))
            left = max(0, np.floor(left + 0.5).astype('int32'))
            bottom = min(
                np.shape(image)[0],
                np.floor(bottom + 0.5).astype('int32'))
            right = min(
                np.shape(image)[1],
                np.floor(right + 0.5).astype('int32'))

            # 画框框
            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)
            label = label.encode('utf-8')
            print(label)

            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            for i in range(thickness):
                draw.rectangle([left + i, top + i, right - i, bottom - i],
                               outline=self.colors[self.class_names.index(
                                   predicted_class)])
            draw.rectangle(
                [tuple(text_origin),
                 tuple(text_origin + label_size)],
                fill=self.colors[self.class_names.index(predicted_class)])
            draw.text(text_origin,
                      str(label, 'UTF-8'),
                      fill=(0, 0, 0),
                      font=font)
            del draw
        return image
Esempio n. 5
0
#--------------------------------------------#
#   该部分代码只用于看网络结构,并非测试代码
#   map测试请看get_dr_txt.py、get_gt_txt.py
#   和get_map.py
#--------------------------------------------#
import torch
from torchsummary import summary

from nets.yolo4_tiny import YoloBody

if __name__ == "__main__":
    # 需要使用device来指定网络在GPU还是CPU运行
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = YoloBody(3,20).to(device)
    summary(model, input_size=(3, 416, 416))
Esempio n. 6
0
#--------------------------------------------#
#   该部分代码只用于看网络结构,并非测试代码
#   map测试请看get_dr_txt.py、get_gt_txt.py
#   和get_map.py
#--------------------------------------------#
import torch
from torchsummary import summary

from nets.yolo4_tiny import YoloBody

if __name__ == "__main__":
    # 需要使用device来指定网络在GPU还是CPU运行
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = YoloBody(3,1).to(device)
    summary(model, input_size=(3, 768, 768))