Esempio n. 1
0
    def randomizeWeights(self, scale='glorot', mode='uni'):
        n_out = self.filter_shape[0]
        if self.activation_func == 'relu':
            norm = self.filter_shape[1] * self.filter_shape[
                3] * self.filter_shape[4]
            b_values = np.asarray(initWeights((n_out, ),
                                              scale=1.0 / norm,
                                              mode='const'),
                                  dtype='float32')
        elif self.activation_func == 'sigmoid':
            b_values = np.asarray(initWeights((n_out, ),
                                              scale=0.5,
                                              mode='const'),
                                  dtype='float32')
        else:  #self.activation_func=='tanh':
            b_values = np.asarray(initWeights((n_out, ),
                                              scale=1e-6,
                                              mode='fix-uni'),
                                  dtype='float32')

        W_values = np.asarray(initWeights(self.filter_shape,
                                          scale,
                                          mode,
                                          pool=self.pool),
                              dtype='float32')

        self.W.set_value(W_values)
        self.b.set_value(b_values)
Esempio n. 2
0
    def randomizeWeights(self, scale='glorot', mode='uni'):
        n_out = self.filter_shape[0]
        if self.activation_func == 'relu':
            norm = self.filter_shape[1] * self.filter_shape[3] * self.filter_shape[4]
            b_values = np.asarray(
                initWeights(
                    (n_out, ),
                    scale=1.0 / norm,
                    mode='const'),
                dtype='float32')
        elif self.activation_func == 'sigmoid':
            b_values = np.asarray(
                initWeights(
                    (n_out, ),
                    scale=0.5,
                    mode='const'),
                dtype='float32')
        else:  #self.activation_func=='tanh':
            b_values = np.asarray(
                initWeights(
                    (n_out, ),
                    scale=1e-6,
                    mode='fix-uni'),
                dtype='float32')

        W_values = np.asarray(
            initWeights(self.filter_shape,
                        scale,
                        mode,
                        pool=self.pool),
            dtype='float32')

        self.W.set_value(W_values)
        self.b.set_value(b_values)
Esempio n. 3
0
    def __init__(self, input, n_in, n_hid, batch_size, activation_func='tanh'):
        assert input.ndim == 3
        input = input.dimshuffle(1, 0, 2)  # exchange batch and time
        self.n_in = n_in
        self.n_hid = n_hid
        self.activation_func = activation_func
        self.output_shape = (batch_size, n_hid)
        self.hid_lin = None
        self.output = None

        print "RecurrentLayer( #Inputs =", n_in, "#Hidden = ", n_hid, ")"

        W_in_values = np.asarray(initWeights((n_in, n_hid), scale='glorot', mode='uni'), dtype='float32')
        self.W_in = theano.shared(W_in_values, name='W_in', borrow=True)
        W_hid_values = np.asarray(initWeights((n_hid, n_hid), mode='rnn'), dtype='float32')
        self.W_hid = theano.shared(W_hid_values, name='W_hid', borrow=True)
        b_hid_values = np.asarray(initWeights((n_hid, ), scale=1e-6, mode='fix-uni'), dtype='float32')
        self.b_hid = theano.shared(b_hid_values, name='b_hid', borrow=True)
        hid_0_values = np.zeros(n_hid, dtype='float32')
        self.hid_0 = theano.shared(hid_0_values, name='hid_0', borrow=True)

        W_in, W_hid, b_hid, hid_0 = self.W_in, self.W_hid, self.b_hid, self.hid_0
        self.params = [W_in, W_hid, b_hid, hid_0]

        # Select non-linearities
        if activation_func == 'tanh':  # range = [-1,1]
            act = T.tanh  # shape: (batch_size, num_outputs)
        elif activation_func == 'relu':  # rectified linear unit ,range = [0,inf]
            act = lambda x: x * (x > 0)  #T.maximum(lin_output,T.zeros_like(lin_output))
        elif activation_func == 'abs':  # abs unit ,range = [0,inf]
            act = T.abs_
        elif activation_func == 'sigmoid':  # range = [0,1]
            print "WARNING: sig() used!"
            #print "WARNING: consider using tanh(.) or relu(.) instead! Sigmoid is really BAD! (relu > tanh >> sigmoid)"
            act = T.nnet.sigmoid  #1/(1 + T.exp(-lin_output))
        elif activation_func == 'linear':
            print "Warning: linear activation in recurrent layer with fanout-%i! Is this the output layer?" % n_hid
            act = lambda x: x
        else:
            raise NotImplementedError("options are: activation_func=('relu'|'sigmoid'|'tanh'|'abs')")

        def recurrence(x_t, hid_prev):
            hid_lin_t = T.dot(x_t, W_in) + T.dot(hid_prev, W_hid) + b_hid
            hid_t = act(hid_lin_t)
            return [hid_t, hid_lin_t]

        outputs_info = [dict(initial=T.alloc(hid_0, input.shape[1], n_hid), taps=[-1]), dict()]
        # shapes are [time, batch, feat]
        ([hid, hid_lin], updates) = theano.scan(fn=recurrence,
                                                sequences=input,
                                                outputs_info=outputs_info,
                                                name='Recurrence')
        hid_lin = hid_lin.dimshuffle(1, 0, 2)  # exchange batch and time  again --> [batch, time, hid/feat]
        hid = act(hid_lin)  # I think this is needed for structural damping (calculating grad wrt hid_lin)

        self.output = hid[:, -1]  # [batch, hid/feat]
        self.hid = hid
        self.hid_lin = hid_lin
Esempio n. 4
0
    def __init__(self, input, n_in, n_hid, batch_size, activation_func='tanh'):
        assert input.ndim == 3
        input = input.dimshuffle(1, 0, 2)  # exchange batch and time
        self.n_in = n_in
        self.n_hid = n_hid
        self.activation_func = activation_func
        self.output_shape = (batch_size, n_hid)
        self.hid_lin = None
        self.output = None

        print "RecurrentLayer( #Inputs =", n_in, "#Hidden = ", n_hid, ")"

        W_in_values = np.asarray(initWeights((n_in, n_hid), scale='glorot', mode='uni'), dtype='float32')
        self.W_in = theano.shared(W_in_values, name='W_in', borrow=True)
        W_hid_values = np.asarray(initWeights((n_hid, n_hid), mode='rnn'), dtype='float32')
        self.W_hid = theano.shared(W_hid_values, name='W_hid', borrow=True)
        b_hid_values = np.asarray(initWeights((n_hid, ), scale=1e-6, mode='fix-uni'), dtype='float32')
        self.b_hid = theano.shared(b_hid_values, name='b_hid', borrow=True)
        hid_0_values = np.zeros(n_hid, dtype='float32')
        self.hid_0 = theano.shared(hid_0_values, name='hid_0', borrow=True)

        W_in, W_hid, b_hid, hid_0 = self.W_in, self.W_hid, self.b_hid, self.hid_0
        self.params = [W_in, W_hid, b_hid, hid_0]

        # Select non-linearities
        if activation_func == 'tanh':  # range = [-1,1]
            act = T.tanh  # shape: (batch_size, num_outputs)
        elif activation_func == 'relu':  # rectified linear unit ,range = [0,inf]
            act = lambda x: x * (x > 0)  #T.maximum(lin_output,T.zeros_like(lin_output))
        elif activation_func == 'abs':  # abs unit ,range = [0,inf]
            act = T.abs_
        elif activation_func == 'sigmoid':  # range = [0,1]
            print "WARNING: sig() used!"
            #print "WARNING: consider using tanh(.) or relu(.) instead! Sigmoid is really BAD! (relu > tanh >> sigmoid)"
            act = T.nnet.sigmoid  #1/(1 + T.exp(-lin_output))
        elif activation_func == 'linear':
            print "Warning: linear activation in recurrent layer with fanout-%i! Is this the output layer?" % n_hid
            act = lambda x: x
        else:
            raise NotImplementedError("options are: activation_func=('relu'|'sigmoid'|'tanh'|'abs')")

        def recurrence(x_t, hid_prev):
            hid_lin_t = T.dot(x_t, W_in) + T.dot(hid_prev, W_hid) + b_hid
            hid_t = act(hid_lin_t)
            return [hid_t, hid_lin_t]

        outputs_info = [dict(initial=T.alloc(hid_0, input.shape[1], n_hid), taps=[-1]), dict()]
        # shapes are [time, batch, feat]
        ([hid, hid_lin], updates) = theano.scan(fn=recurrence,
                                                sequences=input,
                                                outputs_info=outputs_info,
                                                name='Recurrence')
        hid_lin = hid_lin.dimshuffle(1, 0, 2)  # exchange batch and time  again --> [batch, time, hid/feat]
        hid = act(hid_lin)  # I think this is needed for structural damping (calculating grad wrt hid_lin)

        self.output = hid[:, -1]  # [batch, hid/feat]
        self.hid = hid
        self.hid_lin = hid_lin
Esempio n. 5
0
 def randomizeWeights(self, scale_w=1.0):
     n_in, n_hid = self.n_in, self.n_hid
     W_in_values = np.asarray(initWeights((n_in, n_hid), scale='glorot', mode='uni'), dtype='float32')
     self.W_in.set_value(W_in_values)
     W_hid_values = np.asarray(initWeights((n_in, n_hid), mode='rnn'), dtype='float32')
     self.W_hid.set_value(W_hid_values)
     b_hid_values = np.asarray(initWeights((n_hid, ), scale=1e-6, mode='fix-uni'), dtype='float32')
     self.b_hid.set_value(b_hid_values)
     hid_0_values = np.zeros(n_hid, dtype='float32')
     self.hid_0.set_value(hid_0_values)
Esempio n. 6
0
 def randomizeWeights(self, scale_w=1.0):
     n_in, n_hid = self.n_in, self.n_hid
     W_in_values = np.asarray(initWeights((n_in, n_hid), scale='glorot', mode='uni'), dtype='float32')
     self.W_in.set_value(W_in_values)
     W_hid_values = np.asarray(initWeights((n_in, n_hid), mode='rnn'), dtype='float32')
     self.W_hid.set_value(W_hid_values)
     b_hid_values = np.asarray(initWeights((n_hid, ), scale=1e-6, mode='fix-uni'), dtype='float32')
     self.b_hid.set_value(b_hid_values)
     hid_0_values = np.zeros(n_hid, dtype='float32')
     self.hid_0.set_value(hid_0_values)
Esempio n. 7
0
    def randomizeWeights(self, scale='glorot', mode='uni'):
        n_in = self.n_in
        n_out = self.output_shape[1]
        if self.activation_func == 'relu':
            b_values = np.asarray(initWeights((n_out, ), scale=1.0, mode='const'), dtype='float32')
        elif self.activation_func == 'sigmoid':
            b_values = np.asarray(initWeights((n_out, ), scale=0.5, mode='const'), dtype='float32')
        else:  #self.activation_func=='tanh':
            b_values = np.asarray(initWeights((n_out, ), scale=1e-6, mode='fix-uni'), dtype='float32')

        W_values = np.asarray(initWeights((n_in, n_out), scale, mode), dtype='float32')

        self.W.set_value(W_values)
        self.b.set_value(b_values)
Esempio n. 8
0
    def randomizeWeights(self, scale='glorot', mode='uni'):
        n_in = self.n_in
        n_out = self.output_shape[1]
        if self.activation_func == 'relu':
            b_values = np.asarray(initWeights((n_out, ), scale=1.0, mode='const'), dtype='float32')
        elif self.activation_func == 'sigmoid':
            b_values = np.asarray(initWeights((n_out, ), scale=0.5, mode='const'), dtype='float32')
        else:  #self.activation_func=='tanh':
            b_values = np.asarray(initWeights((n_out, ), scale=1e-6, mode='fix-uni'), dtype='float32')

        W_values = np.asarray(initWeights((n_in, n_out), scale, mode), dtype='float32')

        self.W.set_value(W_values)
        self.b.set_value(b_values)
Esempio n. 9
0
    def __init__(self,
                 input,
                 input_shape,
                 filter_shape,
                 pool,
                 activation_func,
                 enable_dropout,
                 use_fragment_pooling,
                 reshape_output,
                 mfp_offsets,
                 mfp_strides,
                 input_layer=None,
                 W=None,
                 b=None,
                 pooling_mode='max'):

        W_values1 = np.asarray(
            initWeights(filter_shape,
                        scale='glorot',
                        mode='normal',
                        pool=pool),
            dtype='float32')
        W_values2 = np.asarray(
            initWeights(filter_shape,
                        scale='glorot',
                        mode='normal',
                        pool=pool),
            dtype='float32')
        W_values3 = np.asarray(
            initWeights(filter_shape,
                        scale='glorot',
                        mode='normal',
                        pool=pool),
            dtype='float32')

        W_values = np.concatenate([W_values1, W_values2, W_values3], axis=0)
        self.W = theano.shared(W_values, name='W_conv', borrow=True)

        # the bias is a 1D tensor -- one bias per output feature map
        if activation_func in ['ReLU', 'relu']:
            norm = filter_shape[1] * filter_shape[3] * filter_shape[4]
            b_values = np.ones((filter_shape[0], ), dtype='float32') / norm
        if b is None:
            n_out = filter_shape[0]
            if activation_func == 'relu' or activation_func == 'ReLU':
                norm = filter_shape[1] * filter_shape[3] * filter_shape[4]
                b_values = np.asarray(
                    initWeights(
                        (n_out, ),
                        scale=1.0 / norm,
                        mode='const'),
                    dtype='float32')
            elif activation_func == 'sigmoid':
                b_values = np.asarray(
                    initWeights(
                        (n_out, ),
                        scale=0.5,
                        mode='const'),
                    dtype='float32')
            else:  # activation_func=='tanh':
                b_values = np.asarray(
                    initWeights(
                        (n_out, ),
                        scale=1e-6,
                        mode='fix-uni'),
                    dtype='float32')

            b_values = np.concatenate([b_values, b_values, b_values], axis=0)
            self.b = theano.shared(value=b_values, borrow=True, name='b_conv')

        N = filter_shape[0]

        l1 = ConvLayer3d(input,
                         input_shape,
                         filter_shape,
                         pool,
                         activation_func,
                         enable_dropout,
                         use_fragment_pooling,
                         reshape_output,
                         mfp_offsets,
                         mfp_strides,
                         affinity=False,
                         W=self.W[0:N],
                         b=self.b[0:N])
        l2 = ConvLayer3d(input,
                         input_shape,
                         filter_shape,
                         pool,
                         activation_func,
                         enable_dropout,
                         use_fragment_pooling,
                         reshape_output,
                         mfp_offsets,
                         mfp_strides,
                         affinity=False,
                         W=self.W[N:2 * N],
                         b=self.b[N:2 * N])
        l3 = ConvLayer3d(input,
                         input_shape,
                         filter_shape,
                         pool,
                         activation_func,
                         enable_dropout,
                         use_fragment_pooling,
                         reshape_output,
                         mfp_offsets,
                         mfp_strides,
                         affinity=False,
                         W=self.W[2 * N:3 * N],
                         b=self.b[2 * N:3 * N])

        self.params = [self.W, self.b]
        self.mfp_strides = l1.mfp_strides
        self.mfp_offsets = l1.mfp_offsets
        self.pool = l1.pool
        self.output_shape = list(l1.output_shape)
        self.output_shape[2] = self.output_shape[2] * 3
        self.prob_shape = list(l1.prob_shape)
        self.prob_shape[1] = self.output_shape[1] * 3
        self.activation_func = l1.activation_func

        self.class_probabilities = T.concatenate(
            [l1.class_probabilities, l2.class_probabilities, l3.class_probabilities], axis=1)
        self.class_prediction = T.concatenate(
            [l1.class_prediction, l2.class_prediction, l3.class_prediction], axis=1)

        self.l1 = l1
        self.l2 = l2
        self.l3 = l3
Esempio n. 10
0
    def __init__(self,
                 input,
                 input_shape,
                 filter_shape,
                 pool,
                 activation_func,
                 enable_dropout,
                 use_fragment_pooling,
                 reshape_output,
                 mfp_offsets,
                 mfp_strides,
                 input_layer=None,
                 W=None,
                 b=None,
                 pooling_mode='max',
                 affinity=False):

        assert len(filter_shape) == 5
        assert input_shape[2] == filter_shape[2]

        self.input = input
        self.pool = pool
        self.number_of_filters = filter_shape[0]
        self.filter_shape = filter_shape
        self.activation_func = activation_func
        self.input_shape = input_shape
        self.input_layer = input_layer
        self.mfp_strides = mfp_strides
        self.mfp_offsets = mfp_offsets
        self.reshape_output = reshape_output

        print "3DConv: input=", input_shape, "\tfilter=", filter_shape  #,"@std=",W_bound

        if W is None:
            W_values = np.asarray(
                initWeights(filter_shape,
                            scale='glorot',
                            mode='normal',
                            pool=pool),
                dtype='float32')
            self.W = theano.shared(W_values, name='W_conv', borrow=True)
        else:
            if isinstance(W, np.ndarray):
                self.W = theano.shared(
                    W.astype(np.float32),
                    name='W_conv',
                    borrow=True)
            else:
                assert isinstance(
                    W,
                    T.TensorVariable), "W must be either np.ndarray or theano var"
                self.W = W

        # the bias is a 1D tensor -- one bias per output feature map
        if activation_func in ['ReLU', 'relu']:
            norm = filter_shape[1] * filter_shape[3] * filter_shape[4]  #
            b_values = np.ones(
                (filter_shape[0], ),
                dtype='float32') / norm
        if b is None:
            n_out = filter_shape[0]
            if activation_func == 'relu' or activation_func == 'ReLU':
                norm = filter_shape[1] * filter_shape[3] * filter_shape[4]
                b_values = np.asarray(
                    initWeights(
                        (n_out, ),
                        scale=1.0 / norm,
                        mode='const'),
                    dtype='float32')
            elif activation_func == 'sigmoid':
                b_values = np.asarray(
                    initWeights(
                        (n_out, ),
                        scale=0.5,
                        mode='const'),
                    dtype='float32')
            else:  # activation_func=='tanh':
                b_values = np.asarray(
                    initWeights(
                        (n_out, ),
                        scale=1e-6,
                        mode='fix-uni'),
                    dtype='float32')

            self.b = theano.shared(value=b_values, borrow=True, name='b_conv')

        else:
            if isinstance(b, np.ndarray):
                self.b = theano.shared(
                    b.astype(np.float32),
                    name='b_conv',
                    borrow=True)
            else:
                assert isinstance(
                    b,
                    T.TensorVariable), "b must be either np.ndarray or theano var"
                self.b = b

        # store parameters of this layer
        self.params = [self.W, self.b]

        # convolve input feature maps with filters
        self.mode = theano.compile.get_default_mode()
        self.conv_out = conv3d(
            signals=input,
            filters=self.W,
            border_mode='valid',
            filters_shape=filter_shape
        )  # signals_shape=input_shape if input_shape[0] is not None else None)

        # down-sample each feature map individually, using maxpooling
        if np.any(pool != 1):
            pool_func = lambda x: pooling.pooling3d(x, pool_shape=pool, mode=pooling_mode)
            if use_fragment_pooling:
                pooled_out, self.mfp_offsets, self.mfp_strides = self.fragmentpool(
                    self.conv_out, pool, mfp_offsets, mfp_strides, pool_func)
            else:
                pooled_out = pool_func(self.conv_out)
        else:
            pooled_out = self.conv_out

        if enable_dropout:
            print "Dropout: ACTIVE"
            self.activation_noise = theano.shared(
                np.float32(0.5),
                name='Dropout Rate')
            rng = T.shared_randomstreams.RandomStreams(int(time.time()))
            p = 1 - self.activation_noise
            self.dropout_gate = 1.0 / p * rng.binomial(
                (pooled_out.shape[1], pooled_out.shape[3],
                 pooled_out.shape[4]),
                1,
                p,
                dtype='float32')
            pooled_out = pooled_out * self.dropout_gate.dimshuffle(('x', 0, 'x', 1, 2))

        lin_output = pooled_out + self.b.dimshuffle('x', 'x', 0, 'x', 'x')
        self.lin_output = lin_output
        r = 1
        if activation_func == 'tanh':
            self.activation_func = 'tanh'
            self.output = T.tanh(lin_output)  # shape: (batch_size, num_outputs)
        elif activation_func in ['ReLU', 'relu']:  #rectified linear unit
            self.activation_func = 'relu'
            self.output = lin_output * (lin_output > 0)  # shape: (batch_size, num_outputs)
        elif activation_func in ['linear', 'none', 'None', None]:
            self.activation_func = 'linear'
            self.output = lin_output
        elif activation_func in ['abs']:
            self.activation_func = 'abs'
            self.output = T.abs_(lin_output)
        elif activation_func in ['sigmoid']:
            self.activation_func = 'sigmoid'
            self.output = T.nnet.sigmoid(lin_output)
        elif activation_func.startswith("maxout"):
            r = int(activation_func.split(" ")[1])
            assert r >= 2
            self.output = pooling.maxout(lin_output, factor=r, axis=2)
        else:
            raise NotImplementedError()

        output_shape = getOutputShape(
            (1 if input_shape[0] is None else input_shape[0], ) +
            input_shape[1:], filter_shape, pool, use_fragment_pooling, r)

        print "Output=", output_shape, "Dropout", (
            "ON," if enable_dropout else
            "OFF,"), "Act:", activation_func, "pool:", pooling_mode
        self.output_shape = output_shape  # e.g. (None, 16, 100, 100)

        if affinity:
            raise RuntimeError("Dont use this code")
#      self.class_probabilities = T.nnet.sigmoid(lin_output) # (bs, z, 3, x, y)
#      self.class_probabilities = self.class_probabilities.dimshuffle((0,2,1,3,4))
#      sh = lin_output.shape
#      if use_fragment_pooling:     
#        self.fragmentstodense(sh) # works on
#
#      self.prob_shape = getProbShape(output_shape, self.mfp_strides)
#      self.class_prediction = T.gt(self.class_probabilities, 0.5)
#      # self.class_probabilities = (bs,3,z,x,y)

        else:
            sh = lin_output.shape  #(bs,x,ch,y,z)  # use this shape to reshape the output to image-shape after softmax
            sh = (sh[2], sh[0], sh[1], sh[3], sh[4])  #(ch, x, y, bs)
            #  put spatial, at back --> (ch,bs,x,y,z), flatten this --> (ch, bs*x*y*z), swap labels --> (bs*x*y*z, ch)
            self.class_probabilities = T.nnet.softmax(
                    lin_output.dimshuffle((2, 0, 1, 3, 4)).flatten(2).dimshuffle((1, 0)))
            if reshape_output:
                self.reshapeoutput(sh)
                if use_fragment_pooling:
                    self.fragmentstodense(sh)

                self.prob_shape = getProbShape(output_shape, self.mfp_strides)
                print "Class Prob Output =", self.prob_shape
            # compute prediction as class whose "probability" is maximal in symbolic form
            self.class_prediction = T.argmax(self.class_probabilities, axis=1)
Esempio n. 11
0
    def __init__(self,
                 input,
                 input_shape,
                 filter_shape,
                 pool,
                 activation_func,
                 enable_dropout,
                 use_fragment_pooling,
                 reshape_output,
                 mfp_offsets,
                 mfp_strides,
                 input_layer=None,
                 W=None,
                 b=None,
                 pooling_mode='max'):

        W_values1 = np.asarray(initWeights(filter_shape,
                                           scale='glorot',
                                           mode='normal',
                                           pool=pool),
                               dtype='float32')
        W_values2 = np.asarray(initWeights(filter_shape,
                                           scale='glorot',
                                           mode='normal',
                                           pool=pool),
                               dtype='float32')
        W_values3 = np.asarray(initWeights(filter_shape,
                                           scale='glorot',
                                           mode='normal',
                                           pool=pool),
                               dtype='float32')

        W_values = np.concatenate([W_values1, W_values2, W_values3], axis=0)
        self.W = theano.shared(W_values, name='W_conv', borrow=True)

        # the bias is a 1D tensor -- one bias per output feature map
        if activation_func in ['ReLU', 'relu']:
            norm = filter_shape[1] * filter_shape[3] * filter_shape[4]
            b_values = np.ones((filter_shape[0], ), dtype='float32') / norm
        if b is None:
            n_out = filter_shape[0]
            if activation_func == 'relu' or activation_func == 'ReLU':
                norm = filter_shape[1] * filter_shape[3] * filter_shape[4]
                b_values = np.asarray(initWeights((n_out, ),
                                                  scale=1.0 / norm,
                                                  mode='const'),
                                      dtype='float32')
            elif activation_func == 'sigmoid':
                b_values = np.asarray(initWeights((n_out, ),
                                                  scale=0.5,
                                                  mode='const'),
                                      dtype='float32')
            else:  # activation_func=='tanh':
                b_values = np.asarray(initWeights((n_out, ),
                                                  scale=1e-6,
                                                  mode='fix-uni'),
                                      dtype='float32')

            b_values = np.concatenate([b_values, b_values, b_values], axis=0)
            self.b = theano.shared(value=b_values, borrow=True, name='b_conv')

        N = filter_shape[0]

        l1 = ConvLayer3d(input,
                         input_shape,
                         filter_shape,
                         pool,
                         activation_func,
                         enable_dropout,
                         use_fragment_pooling,
                         reshape_output,
                         mfp_offsets,
                         mfp_strides,
                         affinity=False,
                         W=self.W[0:N],
                         b=self.b[0:N])
        l2 = ConvLayer3d(input,
                         input_shape,
                         filter_shape,
                         pool,
                         activation_func,
                         enable_dropout,
                         use_fragment_pooling,
                         reshape_output,
                         mfp_offsets,
                         mfp_strides,
                         affinity=False,
                         W=self.W[N:2 * N],
                         b=self.b[N:2 * N])
        l3 = ConvLayer3d(input,
                         input_shape,
                         filter_shape,
                         pool,
                         activation_func,
                         enable_dropout,
                         use_fragment_pooling,
                         reshape_output,
                         mfp_offsets,
                         mfp_strides,
                         affinity=False,
                         W=self.W[2 * N:3 * N],
                         b=self.b[2 * N:3 * N])

        self.params = [self.W, self.b]
        self.mfp_strides = l1.mfp_strides
        self.mfp_offsets = l1.mfp_offsets
        self.pool = l1.pool
        self.output_shape = list(l1.output_shape)
        self.output_shape[2] = self.output_shape[2] * 3
        self.prob_shape = list(l1.prob_shape)
        self.prob_shape[1] = self.output_shape[1] * 3
        self.activation_func = l1.activation_func

        self.class_probabilities = T.concatenate([
            l1.class_probabilities, l2.class_probabilities,
            l3.class_probabilities
        ],
                                                 axis=1)
        self.class_prediction = T.concatenate(
            [l1.class_prediction, l2.class_prediction, l3.class_prediction],
            axis=1)

        self.l1 = l1
        self.l2 = l2
        self.l3 = l3
Esempio n. 12
0
    def __init__(self,
                 input,
                 input_shape,
                 filter_shape,
                 pool,
                 activation_func,
                 enable_dropout,
                 use_fragment_pooling,
                 reshape_output,
                 mfp_offsets,
                 mfp_strides,
                 input_layer=None,
                 W=None,
                 b=None,
                 pooling_mode='max',
                 affinity=False):

        assert len(filter_shape) == 5
        assert input_shape[2] == filter_shape[2]

        self.input = input
        self.pool = pool
        self.number_of_filters = filter_shape[0]
        self.filter_shape = filter_shape
        self.activation_func = activation_func
        self.input_shape = input_shape
        self.input_layer = input_layer
        self.mfp_strides = mfp_strides
        self.mfp_offsets = mfp_offsets
        self.reshape_output = reshape_output

        print "3DConv: input=", input_shape, "\tfilter=", filter_shape  #,"@std=",W_bound

        if W is None:
            W_values = np.asarray(initWeights(filter_shape,
                                              scale='glorot',
                                              mode='normal',
                                              pool=pool),
                                  dtype='float32')
            self.W = theano.shared(W_values, name='W_conv', borrow=True)
        else:
            if isinstance(W, np.ndarray):
                self.W = theano.shared(W.astype(np.float32),
                                       name='W_conv',
                                       borrow=True)
            else:
                assert isinstance(
                    W, T.TensorVariable
                ), "W must be either np.ndarray or theano var"
                self.W = W

        # the bias is a 1D tensor -- one bias per output feature map
        if activation_func in ['ReLU', 'relu']:
            norm = filter_shape[1] * filter_shape[3] * filter_shape[4]  #
            b_values = np.ones((filter_shape[0], ), dtype='float32') / norm
        if b is None:
            n_out = filter_shape[0]
            if activation_func == 'relu' or activation_func == 'ReLU':
                norm = filter_shape[1] * filter_shape[3] * filter_shape[4]
                b_values = np.asarray(initWeights((n_out, ),
                                                  scale=1.0 / norm,
                                                  mode='const'),
                                      dtype='float32')
            elif activation_func == 'sigmoid':
                b_values = np.asarray(initWeights((n_out, ),
                                                  scale=0.5,
                                                  mode='const'),
                                      dtype='float32')
            else:  # activation_func=='tanh':
                b_values = np.asarray(initWeights((n_out, ),
                                                  scale=1e-6,
                                                  mode='fix-uni'),
                                      dtype='float32')

            self.b = theano.shared(value=b_values, borrow=True, name='b_conv')

        else:
            if isinstance(b, np.ndarray):
                self.b = theano.shared(b.astype(np.float32),
                                       name='b_conv',
                                       borrow=True)
            else:
                assert isinstance(
                    b, T.TensorVariable
                ), "b must be either np.ndarray or theano var"
                self.b = b

        # store parameters of this layer
        self.params = [self.W, self.b]

        # convolve input feature maps with filters
        self.mode = theano.compile.get_default_mode()
        self.conv_out = conv3d(
            signals=input,
            filters=self.W,
            border_mode='valid',
            filters_shape=filter_shape
        )  # signals_shape=input_shape if input_shape[0] is not None else None)

        # down-sample each feature map individually, using maxpooling
        if np.any(pool != 1):
            pool_func = lambda x: pooling.pooling3d(
                x, pool_shape=pool, mode=pooling_mode)
            if use_fragment_pooling:
                pooled_out, self.mfp_offsets, self.mfp_strides = self.fragmentpool(
                    self.conv_out, pool, mfp_offsets, mfp_strides, pool_func)
            else:
                pooled_out = pool_func(self.conv_out)
        else:
            pooled_out = self.conv_out

        if enable_dropout:
            print "Dropout: ACTIVE"
            self.activation_noise = theano.shared(np.float32(0.5),
                                                  name='Dropout Rate')
            rng = T.shared_randomstreams.RandomStreams(int(time.time()))
            p = 1 - self.activation_noise
            self.dropout_gate = 1.0 / p * rng.binomial(
                (pooled_out.shape[1], pooled_out.shape[3],
                 pooled_out.shape[4]),
                1,
                p,
                dtype='float32')
            pooled_out = pooled_out * self.dropout_gate.dimshuffle(
                ('x', 0, 'x', 1, 2))

        lin_output = pooled_out + self.b.dimshuffle('x', 'x', 0, 'x', 'x')
        self.lin_output = lin_output
        r = 1
        if activation_func == 'tanh':
            self.activation_func = 'tanh'
            self.output = T.tanh(
                lin_output)  # shape: (batch_size, num_outputs)
        elif activation_func in ['ReLU', 'relu']:  #rectified linear unit
            self.activation_func = 'relu'
            self.output = lin_output * (lin_output > 0
                                        )  # shape: (batch_size, num_outputs)
        elif activation_func in ['linear', 'none', 'None', None]:
            self.activation_func = 'linear'
            self.output = lin_output
        elif activation_func in ['abs']:
            self.activation_func = 'abs'
            self.output = T.abs_(lin_output)
        elif activation_func in ['sigmoid']:
            self.activation_func = 'sigmoid'
            self.output = T.nnet.sigmoid(lin_output)
        elif activation_func.startswith("maxout"):
            r = int(activation_func.split(" ")[1])
            assert r >= 2
            self.output = pooling.maxout(lin_output, factor=r, axis=2)
        else:
            raise NotImplementedError()

        output_shape = getOutputShape(
            (1 if input_shape[0] is None else input_shape[0], ) +
            input_shape[1:], filter_shape, pool, use_fragment_pooling, r)

        print "Output=", output_shape, "Dropout", (
            "ON," if enable_dropout else
            "OFF,"), "Act:", activation_func, "pool:", pooling_mode
        self.output_shape = output_shape  # e.g. (None, 16, 100, 100)

        if affinity:
            raise RuntimeError("Dont use this code")


#      self.class_probabilities = T.nnet.sigmoid(lin_output) # (bs, z, 3, x, y)
#      self.class_probabilities = self.class_probabilities.dimshuffle((0,2,1,3,4))
#      sh = lin_output.shape
#      if use_fragment_pooling:
#        self.fragmentstodense(sh) # works on
#
#      self.prob_shape = getProbShape(output_shape, self.mfp_strides)
#      self.class_prediction = T.gt(self.class_probabilities, 0.5)
#      # self.class_probabilities = (bs,3,z,x,y)

        else:
            sh = lin_output.shape  #(bs,x,ch,y,z)  # use this shape to reshape the output to image-shape after softmax
            sh = (sh[2], sh[0], sh[1], sh[3], sh[4])  #(ch, x, y, bs)
            #  put spatial, at back --> (ch,bs,x,y,z), flatten this --> (ch, bs*x*y*z), swap labels --> (bs*x*y*z, ch)
            self.class_probabilities = T.nnet.softmax(
                lin_output.dimshuffle((2, 0, 1, 3, 4)).flatten(2).dimshuffle(
                    (1, 0)))
            if reshape_output:
                self.reshapeoutput(sh)
                if use_fragment_pooling:
                    self.fragmentstodense(sh)

                self.prob_shape = getProbShape(output_shape, self.mfp_strides)
                print "Class Prob Output =", self.prob_shape
            # compute prediction as class whose "probability" is maximal in symbolic form
            self.class_prediction = T.argmax(self.class_probabilities, axis=1)
Esempio n. 13
0
    def __init__(self,
                 input,
                 n_in,
                 n_out,
                 batch_size,
                 enable_dropout,
                 activation_func='tanh',
                 input_noise=None,
                 input_layer=None,
                 W=None,
                 b=None):
        self.input_layer = input_layer  # only for autoencoder
        self.activation_func = activation_func
        self.output_shape = (batch_size, n_out)
        self.n_in = n_in
        self.lin_output = None
        self.output = None
        self.last_grads = []  # only for autoencoder

        print "PerceptronLayer( #Inputs =", n_in, "#Outputs =", n_out, ")"
        if input_noise is not None:
            self.input_noise = theano.shared(np.float32(input_noise), name='Input Noise')
            print "Input_noise active, p=" + str(self.input_noise.get_value())
            rng = np.random.RandomState(int(time.time()))
            theano_rng = RandomStreams(rng.randint(2**30))
            # apply multiplicative noise to input
            #self.input = theano_rng.binomial(size=input.shape, n=1, p=1-self.input_noise,
            #                                                                dtype='float32') * input
            # apply additive noise to input
            self.input = input + theano_rng.normal(size=input.shape,
                                                   avg=0,
                                                   std=input_noise,
                                                   dtype='float32')
        else:  # no input noise
            self.input = input

        if W is None:
            W_values = np.asarray(initWeights((n_in, n_out), scale='glorot', mode='uni'), dtype='float32')
            self.W = theano.shared(value=W_values, name='W_perceptron' + str(n_in) + '.' + str(n_out), borrow=True)
        else:
            print "Directly using fixed/shared W (", W, "), no Training on it in this layer!"
            if isinstance(W, np.ndarray):
                self.W = theano.shared(value=W.astype(np.float32),
                                       name='W_perceptron' + str(n_in) + '.' + str(n_out),
                                       borrow=True)
            else:
                assert isinstance(W, T.TensorVariable), "W must be either np.ndarray or theano var"
                self.W = W

        if b is None:
            #b_values = np.asarray(np.random.uniform(-1e-8,1e-8,(n_out,)), dtype='float32')
            if activation_func == 'relu' or activation_func == 'ReLU':
                b_values = np.asarray(initWeights((n_out, ), scale=1.0, mode='const'), dtype='float32')
            elif activation_func == 'sigmoid':
                b_values = np.asarray(initWeights((n_out, ), scale=0.5, mode='const'), dtype='float32')
            else:  # activation_func=='tanh':
                b_values = np.asarray(initWeights((n_out, ), scale=1e-6, mode='fix-uni'), dtype='float32')

            self.b = theano.shared(value=b_values, name='b_perceptron' + str(n_in) + '.' + str(n_out), borrow=True)

        else:
            print "Directly using fixed given b (", b, "), no Training on it in this layer!"
            if isinstance(b, np.ndarray):
                self.b = theano.shared(value=b.astype(np.float32),
                                       name='b_perceptron' + str(n_in) + '.' + str(n_out),
                                       borrow=True)
            else:
                assert isinstance(b, T.TensorVariable), "b must be either np.ndarray or theano var"
                self.b = b

        lin_output = T.dot(self.input, self.W)

        if enable_dropout:
            print "Dropout ON"
            self.activation_noise = theano.shared(np.float32(0.5), name='Dropout Rate')
            rng = T.shared_randomstreams.RandomStreams(int(time.time()))
            p = 1 - self.activation_noise
            self.dropout_gate = 1.0 / p * rng.binomial((n_out, ), 1, p, dtype='float32')
            lin_output = lin_output * self.dropout_gate.dimshuffle(('x', 0))

        lin_output = lin_output + self.b

        # Apply non-linearities and ggf. change bias-initialisations
        if activation_func == 'tanh':  # range = [-1,1]
            self.output = T.tanh(lin_output)  # shape: (batch_size, num_outputs)
        elif activation_func == 'relu' or activation_func == 'ReLU':  # rectified linear unit ,range = [0,inf]
            self.activation_func = 'relu'
            self.output = lin_output * (lin_output > 0)  #T.maximum(lin_output,T.zeros_like(lin_output))
        elif activation_func == 'abs':  # abs unit ,range = [0,inf]
            self.output = T.abs_(lin_output)
        elif activation_func == 'sigmoid':  # range = [0,1]
            #print "WARNING: consider using tanh(.) or relu(.) instead! Sigmoid is BAD! (relu > tanh >> sigmoid)"
            lin_output = T.dot(self.input, self.W) + self.b
            self.output = T.nnet.sigmoid(lin_output)  #1/(1 + T.exp(-lin_output))
        elif activation_func == 'linear':
            self.output = (lin_output)
        elif activation_func.startswith("maxout"):
            r = int(activation_func.split(" ")[1])
            assert r >= 2
            n_out = n_out / r
            self.output = pooling.maxout(lin_output, factor=r)
        else:
            raise NotImplementedError("Options are: activation_func=('relu'|'sigmoid'|'tanh'|'abs')")

        self.lin_output = lin_output
        self.params = [self.b if b is None else []] + ([self.W]
                                                       if W is None else [])
        self.class_probabilities = T.nnet.softmax(lin_output)  # shape: (batch_size, num_outputs)
        #self.class_probabilities = T.exp(lin_output) / T.sum(T.exp(lin_output), axis=1, keepdims=True) # For Hessian
        self.class_prediction = T.argmax(self.class_probabilities, axis=1)  # shape: (batch_size,)
Esempio n. 14
0
    def __init__(self,
                 input,
                 input_shape,
                 filter_shape,
                 pool,
                 activation_func,
                 enable_dropout,
                 use_fragment_pooling,
                 reshape_output,
                 mfp_offsets,
                 mfp_strides,
                 input_layer=None,
                 W=None,
                 b=None,
                 pooling_mode='max'):
        assert input_shape[1] == filter_shape[1]

        self.input = input
        self.pool = pool
        self.number_of_filters = filter_shape[0]
        self.filter_shape = filter_shape
        self.activation_func = activation_func
        self.input_shape = input_shape
        self.input_layer = input_layer
        self.mfp_strides = mfp_strides
        self.mfp_offsets = mfp_offsets
        self.reshape_output = reshape_output

        print "2DConv: input=", input_shape, "\tfilter=", filter_shape  #,"@std=",W_bound
        if W is None:
            W_values = np.asarray(
                initWeights(filter_shape,
                            scale='glorot',
                            mode='normal',
                            pool=pool),
                dtype=theano.config.floatX)
            self.W = theano.shared(W_values, name='W_conv', borrow=True)
        else:
            if isinstance(W, np.ndarray):
                self.W = theano.shared(
                    W.astype(np.float32),
                    name='W_conv',
                    borrow=True)
            else:
                assert isinstance(W, T.TensorVariable), "W must be either np.ndarray or theano var"
                self.W = W

        if b is None:
            n_out = filter_shape[0]
            if activation_func == 'relu' or activation_func == 'ReLU':
                norm = filter_shape[2] * filter_shape[3]
                b_values = np.asarray(
                    initWeights(
                        (n_out, ),
                        scale=1.0 / norm,
                        mode='const'),
                    dtype=theano.config.floatX)
            elif activation_func == 'sigmoid':
                b_values = np.asarray(
                    initWeights(
                        (n_out, ),
                        scale=0.5,
                        mode='const'),
                    dtype=theano.config.floatX)
            else:  # activation_func=='tanh':
                b_values = np.asarray(
                    initWeights(
                        (n_out, ),
                        scale=1e-6,
                        mode='fix-uni'),
                    dtype=theano.config.floatX)
            self.b = theano.shared(value=b_values, borrow=True, name='b_conv')
        else:
            if isinstance(b, np.ndarray):
                self.b = theano.shared(
                    b.astype(np.float32),
                    name='b_conv',
                    borrow=True)
            else:
                assert isinstance(b, T.TensorVariable), "b must be either np.ndarray or theano var"
                self.b = b

        # store parameters of this layer
        self.params = [self.W, self.b]

        # convolve input feature maps with filters
        # shape of pooled_out , e.g.: (1,2,27,27) for 2 class-output
        self.conv_out = conv.conv2d(
                input=input,
                filters=self.W,
                border_mode='valid',
                filter_shape=filter_shape
        )  # image_shape = input_shape if input_shape[0] is not None else None)

        # down-sample each feature map individually, using maxpooling
        if np.any(pool != 1):
            pool_func = lambda x: pooling.pooling2d(x, pool_shape=pool, mode=pooling_mode)
            if use_fragment_pooling:
                pooled_out, self.mfp_offsets, self.mfp_strides = self.fragmentpool(
                    self.conv_out, pool, mfp_offsets, mfp_strides, pool_func)
            else:
                #pooled_out = downsample.max_pool_2d(input=self.conv_out, ds=pool, ignore_border=True)
                pooled_out = pool_func(self.conv_out)
        else:
            pooled_out = self.conv_out

        if enable_dropout:
            #print "Dropout: ACTIVE"
            self.activation_noise = theano.shared(np.float32(0.5), name='Dropout Rate')
            rng = T.shared_randomstreams.RandomStreams(int(time.time()))
            p = 1 - self.activation_noise
            self.dropout_gate = 1.0 / p * rng.binomial(
                (pooled_out.shape[2], pooled_out.shape[3]),
                1,
                p,
                dtype=theano.config.floatX)
            pooled_out = pooled_out * self.dropout_gate.dimshuffle(('x', 'x', 0, 1))

        # add the bias term. Since the bias is a vector (1D array), we first
        # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will
        # thus be broadcasted across mini-batches and feature maps
        # width & height
        r = 1  # maxout factor
        lin_output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        if activation_func == 'tanh':
            self.output = T.tanh(lin_output)  # shape: (batch_size, num_outputs)
        elif activation_func in ['ReLU', 'relu']:  #rectified linear unit
            self.output = lin_output * (lin_output > 0)  # shape: (batch_size, num_outputs)
        elif activation_func in ['sigmoid']:
            self.output = T.nnet.sigmoid(lin_output)
        elif activation_func in ['abs']:
            self.output = T.abs_(lin_output)
        elif activation_func in ['linear']:
            self.output = lin_output
        elif activation_func.startswith("maxout"):
            r = int(activation_func.split(" ")[1])
            assert r >= 2
            self.output = pooling.maxout(lin_output, factor=r)
        else:
            raise NotImplementedError()

        output_shape = getOutputShape(input_shape, filter_shape, pool, use_fragment_pooling, r)

        print "Output =", output_shape, "Dropout", ("ON," if enable_dropout else "OFF,"), "Act:",\
            activation_func, "pool:", pooling_mode
        self.output_shape = output_shape  # e.g. (None, 16, 100, 100)

        sh = lin_output.shape  # (bs,ch,x,y) # use this shape to reshape the output to image-shape after softmax
        sh = (sh[1], sh[2], sh[3], sh[0])  #(ch, x, y, bs)
        # put batchsize, at back --> (ch,x,y,bs), flatten this --> (ch, x*y*bs), swap labels --> (x*y*bs, ch)
        self.class_probabilities = T.nnet.softmax(lin_output.dimshuffle((1, 2, 3, 0)).flatten(2).dimshuffle((1, 0)))
        if reshape_output:
            self.reshapeoutput(sh)
            if use_fragment_pooling:
                self.fragmentstodense(sh)

            self.prob_shape = getProbShape(output_shape, self.mfp_strides)
            print "Class Prob Output =", self.prob_shape

        # compute prediction as class whose "probability" is maximal in symbolic form
        self.class_prediction = T.argmax(self.class_probabilities, axis=1)
Esempio n. 15
0
    def __init__(self,
                 input,
                 n_in,
                 n_out,
                 batch_size,
                 enable_dropout,
                 activation_func='tanh',
                 input_noise=None,
                 input_layer=None,
                 W=None,
                 b=None):
        self.input_layer = input_layer  # only for autoencoder
        self.activation_func = activation_func
        self.output_shape = (batch_size, n_out)
        self.n_in = n_in
        self.lin_output = None
        self.output = None
        self.last_grads = []  # only for autoencoder

        print "PerceptronLayer( #Inputs =", n_in, "#Outputs =", n_out, ")"
        if input_noise is not None:
            self.input_noise = theano.shared(np.float32(input_noise), name='Input Noise')
            print "Input_noise active, p=" + str(self.input_noise.get_value())
            rng = np.random.RandomState(int(time.time()))
            theano_rng = RandomStreams(rng.randint(2**30))
            # apply multiplicative noise to input
            #self.input = theano_rng.binomial(size=input.shape, n=1, p=1-self.input_noise,
            #                                                                dtype='float32') * input
            # apply additive noise to input
            self.input = input + theano_rng.normal(size=input.shape,
                                                   avg=0,
                                                   std=input_noise,
                                                   dtype='float32')
        else:  # no input noise
            self.input = input

        if W is None:
            W_values = np.asarray(initWeights((n_in, n_out), scale='glorot', mode='uni'), dtype='float32')
            self.W = theano.shared(value=W_values, name='W_perceptron' + str(n_in) + '.' + str(n_out), borrow=True)
        else:
            print "Directly using fixed/shared W (", W, "), no Training on it in this layer!"
            if isinstance(W, np.ndarray):
                self.W = theano.shared(value=W.astype(np.float32),
                                       name='W_perceptron' + str(n_in) + '.' + str(n_out),
                                       borrow=True)
            else:
                assert isinstance(W, T.TensorVariable), "W must be either np.ndarray or theano var"
                self.W = W

        if b is None:
            #b_values = np.asarray(np.random.uniform(-1e-8,1e-8,(n_out,)), dtype='float32')
            if activation_func == 'relu' or activation_func == 'ReLU':
                b_values = np.asarray(initWeights((n_out, ), scale=1.0, mode='const'), dtype='float32')
            elif activation_func == 'sigmoid':
                b_values = np.asarray(initWeights((n_out, ), scale=0.5, mode='const'), dtype='float32')
            else:  # activation_func=='tanh':
                b_values = np.asarray(initWeights((n_out, ), scale=1e-6, mode='fix-uni'), dtype='float32')

            self.b = theano.shared(value=b_values, name='b_perceptron' + str(n_in) + '.' + str(n_out), borrow=True)

        else:
            print "Directly using fixed given b (", b, "), no Training on it in this layer!"
            if isinstance(b, np.ndarray):
                self.b = theano.shared(value=b.astype(np.float32),
                                       name='b_perceptron' + str(n_in) + '.' + str(n_out),
                                       borrow=True)
            else:
                assert isinstance(b, T.TensorVariable), "b must be either np.ndarray or theano var"
                self.b = b

        lin_output = T.dot(self.input, self.W)

        if enable_dropout:
            print "Dropout ON"
            self.activation_noise = theano.shared(np.float32(0.5), name='Dropout Rate')
            rng = T.shared_randomstreams.RandomStreams(int(time.time()))
            p = 1 - self.activation_noise
            self.dropout_gate = 1.0 / p * rng.binomial((n_out, ), 1, p, dtype='float32')
            lin_output = lin_output * self.dropout_gate.dimshuffle(('x', 0))

        lin_output = lin_output + self.b

        # Apply non-linearities and ggf. change bias-initialisations
        if activation_func == 'tanh':  # range = [-1,1]
            self.output = T.tanh(lin_output)  # shape: (batch_size, num_outputs)
        elif activation_func == 'relu' or activation_func == 'ReLU':  # rectified linear unit ,range = [0,inf]
            self.activation_func = 'relu'
            self.output = lin_output * (lin_output > 0)  #T.maximum(lin_output,T.zeros_like(lin_output))
        elif activation_func == 'abs':  # abs unit ,range = [0,inf]
            self.output = T.abs_(lin_output)
        elif activation_func == 'sigmoid':  # range = [0,1]
            #print "WARNING: consider using tanh(.) or relu(.) instead! Sigmoid is BAD! (relu > tanh >> sigmoid)"
            lin_output = T.dot(self.input, self.W) + self.b
            self.output = T.nnet.sigmoid(lin_output)  #1/(1 + T.exp(-lin_output))
        elif activation_func == 'linear':
            self.output = (lin_output)
        elif activation_func.startswith("maxout"):
            r = int(activation_func.split(" ")[1])
            assert r >= 2
            n_out = n_out / r
            self.output = pooling.maxout(lin_output, factor=r)
        else:
            raise NotImplementedError("Options are: activation_func=('relu'|'sigmoid'|'tanh'|'abs')")

        self.lin_output = lin_output
        self.params = [self.b if b is None else []] + ([self.W]
                                                       if W is None else [])
        self.class_probabilities = T.nnet.softmax(lin_output)  # shape: (batch_size, num_outputs)
        #self.class_probabilities = T.exp(lin_output) / T.sum(T.exp(lin_output), axis=1, keepdims=True) # For Hessian
        self.class_prediction = T.argmax(self.class_probabilities, axis=1)  # shape: (batch_size,)
Esempio n. 16
0
    def __init__(self,
                 input,
                 input_shape,
                 filter_shape,
                 pool,
                 activation_func,
                 enable_dropout,
                 use_fragment_pooling,
                 reshape_output,
                 mfp_offsets,
                 mfp_strides,
                 input_layer=None,
                 W=None,
                 b=None,
                 pooling_mode='max'):
        assert input_shape[1] == filter_shape[1]

        self.input = input
        self.pool = pool
        self.number_of_filters = filter_shape[0]
        self.filter_shape = filter_shape
        self.activation_func = activation_func
        self.input_shape = input_shape
        self.input_layer = input_layer
        self.mfp_strides = mfp_strides
        self.mfp_offsets = mfp_offsets
        self.reshape_output = reshape_output

        print "2DConv: input=", input_shape, "\tfilter=", filter_shape  #,"@std=",W_bound
        if W is None:
            W_values = np.asarray(initWeights(filter_shape,
                                              scale='glorot',
                                              mode='normal',
                                              pool=pool),
                                  dtype='float32')
            self.W = theano.shared(W_values, name='W_conv', borrow=True)
        else:
            if isinstance(W, np.ndarray):
                self.W = theano.shared(W.astype(np.float32),
                                       name='W_conv',
                                       borrow=True)
            else:
                assert isinstance(
                    W, T.TensorVariable
                ), "W must be either np.ndarray or theano var"
                self.W = W

        if b is None:
            n_out = filter_shape[0]
            if activation_func == 'relu' or activation_func == 'ReLU':
                norm = filter_shape[2] * filter_shape[3]
                b_values = np.asarray(initWeights((n_out, ),
                                                  scale=1.0 / norm,
                                                  mode='const'),
                                      dtype='float32')
            elif activation_func == 'sigmoid':
                b_values = np.asarray(initWeights((n_out, ),
                                                  scale=0.5,
                                                  mode='const'),
                                      dtype='float32')
            else:  # activation_func=='tanh':
                b_values = np.asarray(initWeights((n_out, ),
                                                  scale=1e-6,
                                                  mode='fix-uni'),
                                      dtype='float32')
            self.b = theano.shared(value=b_values, borrow=True, name='b_conv')
        else:
            if isinstance(b, np.ndarray):
                self.b = theano.shared(b.astype(np.float32),
                                       name='b_conv',
                                       borrow=True)
            else:
                assert isinstance(
                    b, T.TensorVariable
                ), "b must be either np.ndarray or theano var"
                self.b = b

        # store parameters of this layer
        self.params = [self.W, self.b]

        # convolve input feature maps with filters
        # shape of pooled_out , e.g.: (1,2,27,27) for 2 class-output
        self.conv_out = conv.conv2d(
            input=input,
            filters=self.W,
            border_mode='valid',
            filter_shape=filter_shape
        )  # image_shape = input_shape if input_shape[0] is not None else None)

        # down-sample each feature map individually, using maxpooling
        if np.any(pool != 1):
            pool_func = lambda x: pooling.pooling2d(
                x, pool_shape=pool, mode=pooling_mode)
            if use_fragment_pooling:
                pooled_out, self.mfp_offsets, self.mfp_strides = self.fragmentpool(
                    self.conv_out, pool, mfp_offsets, mfp_strides, pool_func)
            else:
                #pooled_out = downsample.max_pool_2d(input=self.conv_out, ds=pool, ignore_border=True)
                pooled_out = pool_func(self.conv_out)
        else:
            pooled_out = self.conv_out

        if enable_dropout:
            #print "Dropout: ACTIVE"
            self.activation_noise = theano.shared(np.float32(0.5),
                                                  name='Dropout Rate')
            rng = T.shared_randomstreams.RandomStreams(int(time.time()))
            p = 1 - self.activation_noise
            self.dropout_gate = 1.0 / p * rng.binomial(
                (pooled_out.shape[2], pooled_out.shape[3]),
                1,
                p,
                dtype='float32')
            pooled_out = pooled_out * self.dropout_gate.dimshuffle(
                ('x', 'x', 0, 1))

        # add the bias term. Since the bias is a vector (1D array), we first
        # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will
        # thus be broadcasted across mini-batches and feature maps
        # width & height
        r = 1  # maxout factor
        lin_output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        if activation_func == 'tanh':
            self.output = T.tanh(
                lin_output)  # shape: (batch_size, num_outputs)
        elif activation_func in ['ReLU', 'relu']:  #rectified linear unit
            self.output = lin_output * (lin_output > 0
                                        )  # shape: (batch_size, num_outputs)
        elif activation_func in ['sigmoid']:
            self.output = T.nnet.sigmoid(lin_output)
        elif activation_func in ['abs']:
            self.output = T.abs_(lin_output)
        elif activation_func in ['linear']:
            self.output = lin_output
        elif activation_func.startswith("maxout"):
            r = int(activation_func.split(" ")[1])
            assert r >= 2
            self.output = pooling.maxout(lin_output, factor=r)
        else:
            raise NotImplementedError()

        output_shape = getOutputShape(input_shape, filter_shape, pool,
                                      use_fragment_pooling, r)

        print "Output =", output_shape, "Dropout", ("ON," if enable_dropout else "OFF,"), "Act:",\
            activation_func, "pool:", pooling_mode
        self.output_shape = output_shape  # e.g. (None, 16, 100, 100)

        sh = lin_output.shape  # (bs,ch,x,y) # use this shape to reshape the output to image-shape after softmax
        sh = (sh[1], sh[2], sh[3], sh[0])  #(ch, x, y, bs)
        # put batchsize, at back --> (ch,x,y,bs), flatten this --> (ch, x*y*bs), swap labels --> (x*y*bs, ch)
        self.class_probabilities = T.nnet.softmax(
            lin_output.dimshuffle((1, 2, 3, 0)).flatten(2).dimshuffle((1, 0)))
        if reshape_output:
            self.reshapeoutput(sh)
            if use_fragment_pooling:
                self.fragmentstodense(sh)

            self.prob_shape = getProbShape(output_shape, self.mfp_strides)
            print "Class Prob Output =", self.prob_shape

        # compute prediction as class whose "probability" is maximal in symbolic form
        self.class_prediction = T.argmax(self.class_probabilities, axis=1)