Esempio n. 1
0
def began_decoder(opts, noise, is_training=False, reuse=False):

    output_shape = datashapes[opts['dataset']]
    num_units = opts['g_num_filters']
    num_layers = opts['g_num_layers']
    batch_size = tf.shape(noise)[0]

    h0 = ops.linear(opts, noise, num_units * 8 * 8, scope='h0_lin')
    h0 = tf.reshape(h0, [-1, 8, 8, num_units])
    layer_x = h0
    for i in range(num_layers):
        if i % 3 < 2:
            # Don't change resolution
            layer_x = ops.conv2d(opts, layer_x, num_units,
                                 d_h=1, d_w=1, scope='h%d_conv' % i)
            layer_x = tf.nn.elu(layer_x)
        else:
            if i != num_layers - 1:
                # Upsampling by factor of 2 with NN
                scale = 2 ** (i // 3 + 1)
                layer_x = ops.upsample_nn(layer_x, [scale * 8, scale * 8],
                                          scope='h%d_upsample' % i, reuse=reuse)
                # Skip connection
                append = ops.upsample_nn(h0, [scale * 8, scale * 8],
                                          scope='h%d_skipup' % i, reuse=reuse)
                layer_x = tf.concat([layer_x, append], axis=3)

    last_h = ops.conv2d(opts, layer_x, output_shape[-1],
                        d_h=1, d_w=1, scope='hfinal_conv')
    if opts['input_normalize_sym']:
        return tf.nn.tanh(last_h), last_h
    else:
        return tf.nn.sigmoid(last_h), last_h
Esempio n. 2
0
def began_encoder(opts, inputs, is_training=False, reuse=False):
    num_units = opts['e_num_filters']
    assert num_units == opts['g_num_filters'], \
        'BEGAN requires same number of filters in encoder and decoder'
    num_layers = opts['e_num_layers']
    layer_x = ops.conv2d(opts, inputs, num_units, scope='hfirst_conv')
    for i in range(num_layers):
        if i % 3 < 2:
            if i != num_layers - 2:
                ii = i - (i / 3)
                scale = (ii + 1 - ii / 2)
            else:
                ii = i - (i / 3)
                scale = (ii - (ii - 1) / 2)
            layer_x = ops.conv2d(opts, layer_x, num_units * scale, d_h=1, d_w=1,
                                 scope='h%d_conv' % i)
            layer_x = tf.nn.elu(layer_x)
        else:
            if i != num_layers - 1:
                layer_x = ops.downsample(layer_x, scope='h%d_maxpool' % i,
                                         reuse=reuse)
    # Tensor should be [N, 8, 8, filters] at this point
    if opts['e_noise'] != 'gaussian':
        res = ops.linear(opts, layer_x, opts['zdim'], scope='hfinal_lin')
        return res
    else:
        mean = ops.linear(opts, layer_x, opts['zdim'], scope='mean_lin')
        log_sigmas = ops.linear(opts, layer_x,
                                opts['zdim'], scope='log_sigmas_lin')
        return mean, log_sigmas
Esempio n. 3
0
def dcgan_encoder(opts, inputs, is_training=False, reuse=False):
    num_units = opts['e_num_filters']
    num_layers = opts['e_num_layers']
    layer_x = inputs
    for i in range(num_layers):
        scale = 2**(num_layers - i - 1)
        layer_x = ops.conv2d(opts,
                             layer_x,
                             num_units // scale,
                             scope='h%d_conv' % i)
        if opts['batch_norm']:
            layer_x = ops.batch_norm(opts,
                                     layer_x,
                                     is_training,
                                     reuse,
                                     scope='h%d_bn' % i)
        layer_x = tf.nn.relu(layer_x)
    if opts['e_noise'] != 'gaussian':
        res = ops.linear(opts, layer_x, opts['zdim'], scope='hfinal_lin')
        return res
    else:
        mean = ops.linear(opts, layer_x, opts['zdim'], scope='mean_lin')
        log_sigmas = ops.linear(opts,
                                layer_x,
                                opts['zdim'],
                                scope='log_sigmas_lin')
        return mean, log_sigmas
Esempio n. 4
0
def ali_decoder(opts, noise, is_training=False, reuse=False):
    output_shape = datashapes[opts['dataset']]
    batch_size = tf.shape(noise)[0]
    noise_size = int(noise.get_shape()[1])
    data_height = output_shape[0]
    data_width = output_shape[1]
    data_channels = output_shape[2]
    noise = tf.reshape(noise, [-1, 1, 1, noise_size])
    num_units = opts['g_num_filters']
    layer_params = []
    layer_params.append([4, 1, num_units])
    layer_params.append([4, 2, num_units // 2])
    layer_params.append([4, 1, num_units // 4])
    layer_params.append([4, 2, num_units // 8])
    layer_params.append([5, 1, num_units // 8])
    # For convolution: (n - k) / stride + 1 = s
    # For transposed: (s - 1) * stride + k = n
    layer_x = noise
    height = 1
    width = 1
    for i, (kernel, stride, channels) in enumerate(layer_params):
        height = (height - 1) * stride + kernel
        width = height
        layer_x = ops.deconv2d(
            opts, layer_x, [batch_size, height, width, channels],
            d_h=stride, d_w=stride, scope='h%d_deconv' % i,
            conv_filters_dim=kernel, padding='VALID')
        if opts['batch_norm']:
            layer_x = ops.batch_norm(opts, layer_x, is_training,
                                     reuse, scope='h%d_bn' % i)
        layer_x = ops.lrelu(layer_x, 0.1)
    assert height == data_height
    assert width == data_width

    # Then two 1x1 convolutions.
    layer_x = ops.conv2d(opts, layer_x, num_units // 8, d_h=1, d_w=1,
                         scope='conv2d_1x1', conv_filters_dim=1)
    if opts['batch_norm']:
        layer_x = ops.batch_norm(opts, layer_x,
                                 is_training, reuse, scope='hfinal_bn')
    layer_x = ops.lrelu(layer_x, 0.1)
    layer_x = ops.conv2d(opts, layer_x, data_channels, d_h=1, d_w=1,
                         scope='conv2d_1x1_2', conv_filters_dim=1)
    if opts['input_normalize_sym']:
        return tf.nn.tanh(layer_x), layer_x
    else:
        return tf.nn.sigmoid(layer_x), layer_x
Esempio n. 5
0
def ali_encoder(opts, inputs, is_training=False, reuse=False):
    num_units = opts['e_num_filters']
    layer_params = []
    layer_params.append([5, 1, num_units // 8])
    layer_params.append([4, 2, num_units // 4])
    layer_params.append([4, 1, num_units // 2])
    layer_params.append([4, 2, num_units])
    layer_params.append([4, 1, num_units * 2])
    # For convolution: (n - k) / stride + 1 = s
    # For transposed: (s - 1) * stride + k = n
    layer_x = inputs
    height = int(layer_x.get_shape()[1])
    width = int(layer_x.get_shape()[2])
    assert height == width
    for i, (kernel, stride, channels) in enumerate(layer_params):
        height = (height - kernel) // stride + 1
        width = height
        layer_x = ops.conv2d(
            opts, layer_x, channels, d_h=stride, d_w=stride,
            scope='h%d_conv' % i, conv_filters_dim=kernel, padding='VALID')
        if opts['batch_norm']:
            layer_x = ops.batch_norm(opts, layer_x, is_training,
                                     reuse, scope='h%d_bn' % i)
        layer_x = ops.lrelu(layer_x, 0.1)
    assert height == 1
    assert width == 1

    # Then two 1x1 convolutions.
    layer_x = ops.conv2d(opts, layer_x, num_units * 2, d_h=1, d_w=1,
                         scope='conv2d_1x1', conv_filters_dim=1)
    if opts['batch_norm']:
        layer_x = ops.batch_norm(opts, layer_x, is_training,
                                 reuse, scope='hfinal_bn')
    layer_x = ops.lrelu(layer_x, 0.1)
    layer_x = ops.conv2d(opts, layer_x, num_units // 2, d_h=1, d_w=1,
                         scope='conv2d_1x1_2', conv_filters_dim=1)

    if opts['e_noise'] != 'gaussian':
        res = ops.linear(opts, layer_x, opts['zdim'], scope='hlast_lin')
        return res
    else:
        mean = ops.linear(opts, layer_x, opts['zdim'], scope='mean_lin')
        log_sigmas = ops.linear(opts, layer_x,
                                opts['zdim'], scope='log_sigmas_lin')
        return mean, log_sigmas