from network import run_simulation import numpy as np from brian.stdunits import ms ree_steps = np.linspace(1, 4, 13) ff = np.zeros_like(ree_steps) nnans = np.zeros_like(ree_steps) nffs = np.zeros_like(ree_steps) for i, ree in enumerate(ree_steps): # run simulation with one network, nine trials data = run_simulation(trials=10, ree=ree, verbose=False, winlen=100 * ms, t_stim=1000) # take only excitatory neurons data = data[0,:,:4000,:] # compute fano factor fano_factor = (np.var(data, axis=0)/np.mean(data, axis=0)).flatten() nnans[i] = np.sum(np.isnan(fano_factor)) nffs[i] = np.sum(np.isfinite(fano_factor)) # save mean over neurons and time windows without nans ff[i] = np.mean(fano_factor[np.isfinite(fano_factor)]) print "ree = {} done".format(ree) print "ff = {}".format(ff[i]) np.save('Data/ff_vs_ree_working', [ree_steps, ff, nnans, nffs])
from network import run_simulation import numpy as np from brian.stdunits import ms ree_steps = np.linspace(1, 4, 13) ff = np.zeros_like(ree_steps) nnans = np.zeros_like(ree_steps) nffs = np.zeros_like(ree_steps) for i, ree in enumerate(ree_steps): # run simulation with one network, nine trials data = run_simulation(trials=10, ree=ree, verbose=False, winlen=100 * ms, t_stim=1000) # take only excitatory neurons data = data[0, :, :4000, :] # compute fano factor fano_factor = (np.var(data, axis=0) / np.mean(data, axis=0)).flatten() nnans[i] = np.sum(np.isnan(fano_factor)) nffs[i] = np.sum(np.isfinite(fano_factor)) # save mean over neurons and time windows without nans ff[i] = np.mean(fano_factor[np.isfinite(fano_factor)]) print "ree = {} done".format(ree) print "ff = {}".format(ff[i]) np.save('Data/ff_vs_ree_working', [ree_steps, ff, nnans, nffs])
from network import run_simulation import numpy as np import matplotlib.pyplot as plt from brian.stdunits import ms, mV ree_steps = np.linspace(1, 4, 7) ff = np.zeros_like(ree_steps) nnans = np.zeros_like(ree_steps) for i, ree in enumerate(ree_steps): # run simulation with one network, nine trials data = run_simulation(trials=4, ree=ree, verbose=False, winlen=100 * ms) # take only excitatory neurons data = data[0, :, :4000, :] # compute fano factor fano_factor = (np.var(data, axis=0) / np.mean(data, axis=0)).flatten() nnans[i] = np.sum(np.isnan(fano_factor)) # save mean over neurons and time windows without nans ff[i] = np.mean(fano_factor[np.isfinite(fano_factor)]) print "ree = {} done".format(ree) print "ff = {}".format(ff[i]) np.save("ff_vs_ree", [ree_steps, ff, nnans]) plt.plot(ree_steps, ff) plt.show()