Esempio n. 1
0
    def __init__(self, state_size, action_size, seed=0, mode='DQN', use_prioritized_memory=False):
        """Initialize an Agent object.

        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)
        self.use_prioritized_memory = use_prioritized_memory

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size, seed).to(DEVICE)
        self.qnetwork_target = QNetwork(state_size, action_size, seed).to(DEVICE)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)
        self.mode = mode
        print('Q Network')
        print(self.qnetwork_local)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)

        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
        self.train_steps = 0
Esempio n. 2
0
    def __init__(self,
                 buffer_size=BUFFER_SIZE,
                 batch_size=BATCH_SIZE,
                 lr=LR,
                 epsilon=EPSILON):
        # local network for estimate
        # target network for computing target
        self.batch_size = batch_size
        self.epsilon = epsilon

        self.network_loc = QNetwork()
        self.network_targ = QNetwork()
        setWeights(self.network_loc, self.network_targ)
        self.optimizer = tf.train.AdamOptimizer(learning_rate=lr)

        self.buffer = ReplayBuffer(buffer_size=buffer_size,
                                   batch_size=batch_size)
        self.actions = actionlst()
        self.context_extractor = ContextExtractor()
        self.state_target = None

        # Build model so it knows the input shape
        self.network_loc.build(tf.TensorShape([
            None,
            STATE_LENGTH,
        ]))
        self.network_targ.build(tf.TensorShape([
            None,
            STATE_LENGTH,
        ]))
Esempio n. 3
0
 def __init__(self, parmas):
     self.num_actions = params['num_actions']
     self.device = params['device']
     self.path_model = params['path_model']
     self.policy_net = QNetwork(self.num_actions).to(self.device)
     self.policy_net.load_state_dict(
         torch.load(self.path_model, map_location=self.device))
     self.policy_net.eval()
Esempio n. 4
0
    def __init__(self, state_size, action_size, seed, config):
        self.state_size = state_size
        self.action_size = action_size
        self.config = config
        self.seed = random.seed(seed)

        self.local_q_net = QNetwork(state_size, action_size, seed).to(device)
        self.target_q_net = QNetwork(state_size, action_size, seed).to(device)

        self.optimizer = optim.Adam(self.local_q_net.parameters(),
                                    lr=config["LR"])

        self.memory = ReplayBuffer(action_size, config["BUFFER_SIZE"],
                                   config["BATCH_SIZE"], seed)

        self.t_step = 0
Esempio n. 5
0
class TrainedBrain():
    def __init__(self, parmas):
        self.num_actions = params['num_actions']
        self.device = params['device']
        self.path_model = params['path_model']
        self.policy_net = QNetwork(self.num_actions).to(self.device)
        self.policy_net.load_state_dict(
            torch.load(self.path_model, map_location=self.device))
        self.policy_net.eval()

    def decide_action(self, state):
        with torch.no_grad():
            self.q_vals = self.policy_net(
                torch.from_numpy(state.copy()).float().to(
                    self.device).unsqueeze(0))

        return int(self.q_vals.max(1)[1].view(1, 1))
    def __init__(self, state_space: int, action_num: int, action_scale: int,
                 learning_rate, device: str):
        super(BQN, self).__init__()

        self.q = QNetwork(state_space, action_num, action_scale).to(device)
        self.target_q = QNetwork(state_space, action_num,
                                 action_scale).to(device)
        self.target_q.load_state_dict(self.q.state_dict())

        self.optimizer = optim.Adam([\
                                    {'params' : self.q.linear_1.parameters(),'lr': learning_rate / (action_num+2)},\
                                    {'params' : self.q.linear_2.parameters(),'lr': learning_rate / (action_num+2)},\
                                    {'params' : self.q.value.parameters(), 'lr' : learning_rate/ (action_num+2)},\
                                    {'params' : self.q.actions.parameters(), 'lr' : learning_rate},\
                                    ])
        self.update_freq = 1000
        self.update_count = 0
Esempio n. 7
0
 def __init__(self, params):
     self.num_actions = params['num_actions']
     self.device = params['device']
     self.batch_size = params['batch_size']
     self.learning_rate = params['learning_rate']
     self.gamma = params['gamma']
     self.eps_start = params['eps_start']
     self.eps_end = params['eps_end']
     self.eps_decay = params['eps_decay']
     self.policy_net = QNetwork(self.num_actions).to(self.device)
     self.target_net = QNetwork(self.num_actions).to(self.device)
     self.target_net.load_state_dict(self.policy_net.state_dict())
     self.target_net.eval()
     self.memory = ReplayMemory(params['replay_memory_size'])
     self.optimizer = optim.Adam(self.policy_net.parameters(),
                                 lr=self.learning_rate)
     self.steps_done = 0
     self.q_vals = [0] * self.num_actions
     self.loss = 0
Esempio n. 8
0
    def __init__(self, state_size, action_size):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
Esempio n. 9
0
File: main.py Progetto: wuzy38/DQN
 def __init__(self, game_name="pong"):
     self.LEARNING_RATE = 1e-4
     self.eps_init = 1
     self.eps_final = 0.02
     self.schedule_timesteps = 5e4  # tot_timestep * explo_frac
     self.eps = self.eps_init
     self.GAMMA = 0.95
     self.BATCH_SIZE = 32
     self.TARGET_UPDATE_C = 1000
     self.MEMORY_CAPACITY_N = 200
     self.episode_M = 5000
     self.GAME_ENV = {
         "pong": "PongNoFrameskip-v4",
         "cartpole": "CartPole-v0",
     }
     self.game_name = game_name
     env_name = self.GAME_ENV[self.game_name]
     self.env = wrapEnv(gym.make(env_name))
     self.reward_list = []
     self.Qnetwork = QNetwork(self.env.action_space.n, self.LEARNING_RATE)
     self.Qnetwork.summary()
class BQN(nn.Module):
    def __init__(self, state_space: int, action_num: int, action_scale: int,
                 learning_rate, device: str):
        super(BQN, self).__init__()

        self.q = QNetwork(state_space, action_num, action_scale).to(device)
        self.target_q = QNetwork(state_space, action_num,
                                 action_scale).to(device)
        self.target_q.load_state_dict(self.q.state_dict())

        self.optimizer = optim.Adam([\
                                    {'params' : self.q.linear_1.parameters(),'lr': learning_rate / (action_num+2)},\
                                    {'params' : self.q.linear_2.parameters(),'lr': learning_rate / (action_num+2)},\
                                    {'params' : self.q.value.parameters(), 'lr' : learning_rate/ (action_num+2)},\
                                    {'params' : self.q.actions.parameters(), 'lr' : learning_rate},\
                                    ])
        self.update_freq = 1000
        self.update_count = 0

    def action(self, x):
        return self.q(x)

    def train_mode(self, n_epi, memory, batch_size, gamma, use_tensorboard,
                   writer):
        state, actions, reward, next_state, done_mask = memory.sample(
            batch_size)
        actions = torch.stack(actions).transpose(0, 1).unsqueeze(-1)
        done_mask = torch.abs(done_mask - 1)

        cur_actions = self.q(state)
        cur_actions = torch.stack(cur_actions).transpose(0, 1)
        cur_actions = cur_actions.gather(2, actions.long()).squeeze(-1)

        target_cur_actions = self.target_q(next_state)
        target_cur_actions = torch.stack(target_cur_actions).transpose(0, 1)
        target_cur_actions = target_cur_actions.max(-1, keepdim=True)[0]
        target_action = (done_mask * gamma * target_cur_actions.mean(1) +
                         reward)

        loss = F.mse_loss(cur_actions, target_action.repeat(1, 4))

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        self.update_count += 1
        if (self.update_count % self.update_freq
                == 0) and (self.update_count > 0):
            self.update_count = 0
            self.target_q.load_state_dict(self.q.state_dict())

        if use_tensorboard:
            writer.add_scalar("Loss/loss", loss, n_epi)
        return loss
Esempio n. 11
0
def train():
    env.reset()

    _, reward, done, _ = env.step(env.action_space.sample())
    state = get_state()

    memory = Memory(max_size=memory_size)

    for _ in range(pretrain_length):
        action = env.action_space.sample()
        _, reward, done, _ = env.step(action)
        next_state = get_state()

        if done:
            next_state = np.zeros(state.shape)
            memory.add((state, action, reward, next_state))

            env.reset()

            _, reward, done, _ = env.step(env.action_space.sample())
            state = get_state()
        else:
            memory.add((state, action, reward, next_state))
            state = next_state

    img_shape = state.shape
    network = QNetwork(height=img_shape[0],
                       width=img_shape[1],
                       channel=img_shape[2],
                       learning_rate=learning_rate)
    saver = tf.train.Saver()
    save_file = 'checkpoints/cartpole.ckpt'
    rewards_list = []
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        step = 0
        for ep in range(1, train_episodes + 1):
            total_reward = 0
            t = 0
            while t < max_steps:
                step += 1
                env.render()

                explore_p = explore_stop + \
                    (explore_start - explore_stop) * np.exp(-decay_rate * step)
                if explore_p > np.random.rand():
                    action = env.action_space.sample()
                else:
                    feed = {network.inputs_: state.reshape((1, *state.shape))}
                    Qs = sess.run(network.output, feed_dict=feed)
                    action = np.argmax(Qs)

                _, reward, done, _ = env.step(action)
                next_state = get_state()
                total_reward += reward

                if done:
                    next_state = np.zeros(state.shape)
                    t = max_steps

                    print('Episode: {}'.format(ep),
                          'Total reward: {}'.format(total_reward),
                          'Training loss: {:.4f}'.format(loss),
                          'Explore Prob: {:.4f}'.format(explore_p))
                    rewards_list.append((ep, total_reward))

                    memory.add((state, action, reward, next_state))
                    env.reset()
                    _, reward, done, _ = env.step(env.action_space.sample())
                    state = get_state()

                else:
                    memory.add((state, action, reward, next_state))
                    state = next_state
                    t += 1

                batch = memory.sample(batch_size)
                states = np.array([each[0] for each in batch])
                actions = np.array([each[1] for each in batch])
                rewards = np.array([each[2] for each in batch])
                next_states = np.array([each[3] for each in batch])

                target_Qs = sess.run(network.output,
                                     feed_dict={network.inputs_: next_states})

                temp_shape = next_states.shape
                is_episode_over = (next_states.reshape(
                    (temp_shape[0], -1)) == np.zeros(
                        (temp_shape[1] * temp_shape[2] *
                         temp_shape[3]))).all(axis=1)
                target_Qs[is_episode_over] = (0, 0, 0, 0)

                targets = rewards + gamma * np.max(target_Qs, axis=1)

                loss, _ = sess.run(
                    [network.loss, network.opt],
                    feed_dict={
                        network.inputs_: states,
                        network.targetQs_: targets,
                        network.actions_: actions
                    })

        saver.save(sess, save_file)
Esempio n. 12
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences
        states = torch.from_numpy(states).float().to(device)
        actions = torch.from_numpy(actions).long().to(device)
        rewards = torch.from_numpy(rewards).float().to(device)
        next_states = torch.from_numpy(next_states).float().to(device)
        dones = torch.from_numpy(dones).float().to(device)

        # Get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(
            1)[0].unsqueeze(1)
        # Compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
class Agent():
    '''Interacts and learns from the environment'''
    
    def __init__(self, state_size, action_size, seed):
        """Initialize an Agent object
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed(int): random seed
        """
        
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)
        
        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size, seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)
        
        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # initialise the timestep (for updating every UPDATE_EVERY steps)
        self.t_step = 0
        
    def step(self, state, action, reward, next_state, done):
        # Save experience in the replay memory
        self.memory.add(state, action, reward, next_state, done)
        
        # Learn every UPDATE_EVERY time steps
        self.t_step = (self.t_step +1) % UPDATE_EVERY
        
        if self.t_step ==0:
            # Get random subset from the memory, but ONLY if there are enough samples
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)
                
    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy
        Params
        ------
            state(array_like): current state
            eps(float): epsilon, epsilon-greedy action selection (to keep element of exploration)
        """
        # convert the state from the Unity network into a torch tensor
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        # Note to pass it through the deep network, we need to take the numpy array and:
        # 1 - convert it to torch array with from_numpy()
        # 2 - convert it to float 32 as that is what is expected. Use .float()
        # 3 - Add a dimension on axis 0 with .unsqueeze(0). Because pytorch expects a BATCH of 1 dimensional arrays
        # to be fed into its network. For example feeding in a batch of 64 arrays, each of length 37. In our case,
        # with reinforcement learning we are only feeding one at a time, but the network still expects it to be 2D.
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()
        
        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))
        
    def learn(self, experiences, gamma):
        """Update value paratmers of the deep-Q network using given batch of experience tuples
        
        Params
        ------
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences
        
        # get the max predicted Q values for the next states, from the target model
        # note: detach just detaches the tensor from the grad_fn - i.e. we are going to do some non-tracked
        # computations based on the value of this tensor (we DON'T update the target model at this stage)
        Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)
        # compute Q targets for current states
        Q_targets = rewards + (gamma * Q_targets_next * (1-dones))
        
        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)
        
        # compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimise the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        
        # update target network
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)
    
    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters
        θ_target = τ*θ_local + (1 - τ)*θ_target
        
        Params
        ======
            local_model (Pytorch model): weights will be copied from
            taret_model (Pytorch model): weights will be copied to
            tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(tau*local_param.data + (1.0-tau) * target_param.data)
Esempio n. 14
0
File: main.py Progetto: wuzy38/DQN
class DQNAgent():
    def __init__(self, game_name="pong"):
        self.LEARNING_RATE = 1e-4
        self.eps_init = 1
        self.eps_final = 0.02
        self.schedule_timesteps = 5e4  # tot_timestep * explo_frac
        self.eps = self.eps_init
        self.GAMMA = 0.95
        self.BATCH_SIZE = 32
        self.TARGET_UPDATE_C = 1000
        self.MEMORY_CAPACITY_N = 200
        self.episode_M = 5000
        self.GAME_ENV = {
            "pong": "PongNoFrameskip-v4",
            "cartpole": "CartPole-v0",
        }
        self.game_name = game_name
        env_name = self.GAME_ENV[self.game_name]
        self.env = wrapEnv(gym.make(env_name))
        self.reward_list = []
        self.Qnetwork = QNetwork(self.env.action_space.n, self.LEARNING_RATE)
        self.Qnetwork.summary()

    def selectAction(self, eval_Qnetwork, state, is_train=True):
        """ 使用epsilon-greedy策略选择动作 
            使用神经网络近似值函数
        """
        if random.random() <= self.eps and is_train:
            action = self.env.action_space.sample()
        else:
            action = np.argmax(
                eval_Qnetwork.predict([
                    np.ones((1, self.env.action_space.n)),
                    np.expand_dims(np.array(state), 0)
                ]))  # (1, 84, 84, 4) 增加一个维度 - batch_size
        return action

    def updateQNetwork(self,
                       eval_Qnetwork,
                       target_Qnetwork,
                       sample_batch,
                       double=True):
        """ DDQN/DQN 梯度下降更新网络 """
        # states = np.array([a[0] for a in sample_batch])
        # actions = np.array([a[1] for a in sample_batch])
        # rewards = np.array([a[2] for a in sample_batch])
        # next_states = np.array([a[3] for a in sample_batch])
        # dones = np.array([a[4] for a in sample_batch])
        states, actions, rewards, next_states, dones = [], [], [], [], []
        for i in range(len(sample_batch)):
            states.append(np.array(sample_batch[i][0], copy=False))
            actions.append(sample_batch[i][1])
            rewards.append(sample_batch[i][2])
            next_states.append(np.array(sample_batch[i][3], copy=False))
            dones.append(sample_batch[i][4])
        states = np.array(states)
        actions = np.array(actions)
        rewards = np.array(rewards)
        next_states = np.array(next_states)
        dones = np.array(dones)
        ones_mat = np.ones((len(sample_batch), self.env.action_space.n))
        if double == True:
            eval_actions = np.argmax(eval_Qnetwork.predict(
                [ones_mat, next_states]),
                                     axis=1)
            target_action_Qvalue = target_Qnetwork.predict(
                [ones_mat, next_states])[range(len(sample_batch)),
                                         eval_actions]
        else:
            target_action_Qvalue = np.max(target_Qnetwork.predict(
                [ones_mat, next_states]),
                                          axis=1)
        # y_true = eval_Qnetwork.predict(states)
        # y_true[range(len(y_true)), actions] = rewards + (1-dones)*self.GAMMA * target_action_Qvalue
        select_actions = np.zeros((len(sample_batch), self.env.action_space.n))
        select_actions[range(len(sample_batch)), actions] = 1
        y_true = rewards + (1 - dones) * self.GAMMA * target_action_Qvalue
        eval_Qnetwork.fit(x=[select_actions, states],
                          y=select_actions * np.expand_dims(y_true, axis=1),
                          epochs=1,
                          batch_size=len(sample_batch),
                          verbose=0)

    def dqnTrain(self, double=True):
        step = 0
        memory = ReplayMemory(self.MEMORY_CAPACITY_N)
        eval_Qnetwork = QNetwork(self.env.action_space.n, self.LEARNING_RATE)
        target_Qnetwork = QNetwork(self.env.action_space.n, self.LEARNING_RATE)
        eval_Qnetwork.set_weights(self.Qnetwork.get_weights())
        target_Qnetwork.set_weights(eval_Qnetwork.get_weights())
        reward_list = self.reward_list
        time_start = time.time()
        for episode in range(1, self.episode_M + 1):
            episode_reward = 0
            state = self.env.reset()
            while True:
                step += 1
                action = self.selectAction(eval_Qnetwork, state)
                next_state, reward, done, _ = self.env.step(action)
                episode_reward += reward
                memory.add((state, action, reward, next_state, done))
                state = next_state
                if len(memory) > self.BATCH_SIZE:
                    sample_batch = memory.sample(self.BATCH_SIZE)
                    self.updateQNetwork(eval_Qnetwork, target_Qnetwork,
                                        sample_batch, double)
                    # self.EPS = self.EPS*self.EPS_DECAY if self.EPS > self.EPS_MIN else self.EPS_MIN
                    eps_fraction = min(
                        float(step) / self.schedule_timesteps, self.eps_init)
                    self.eps = self.eps_init + eps_fraction * (self.eps_final -
                                                               self.eps_init)
                if step % self.TARGET_UPDATE_C == 0:
                    target_Qnetwork.set_weights(eval_Qnetwork.get_weights())
                if done:
                    break
            reward_list.append(episode_reward)
            print(
                "episode: {}, reward: {}, tot_step: {}, {}min. eps: {}".format(
                    episode, episode_reward, step,
                    (time.time() - time_start) / 60, self.eps))
            if episode % 5 == 0:
                print(
                    "episode {}. recent 5 episode_reward:{}. using {} min. total step: {}. "
                    .format(episode, self.reward_list[-5:],
                            (time.time() - time_start) / 60, step))
            if episode % 50 == 0:
                self.save(target_Qnetwork, reward_list)
        self.Qnetwork.set_weights(target_Qnetwork.get_weights())
        self.reward_list = reward_list
        return target_Qnetwork, reward_list

    def load(self, filename_prefix=None):
        if filename_prefix == None:
            filename_prefix = "pong/data/ddqn_bs" + str(self.BATCH_SIZE)
        self.Qnetwork = keras.models.load_model(filename_prefix + "network.h5")
        with open(filename_prefix + "reward.json", 'r') as file_obj:
            self.reward_list = json.loads(file_obj.read())

    def save(self, Qnetwork=None, reward_list=None, filename_prefix=None):
        if Qnetwork == None:
            Qnetwork = self.Qnetwork
        if reward_list == None:
            reward_list = self.reward_list
        if filename_prefix == None:
            filename_prefix = "pong/data/ddqn_bs_" + str(self.BATCH_SIZE)
        Qnetwork.save(filename_prefix + "network.h5")
        with open(filename_prefix + "reward.json", 'w') as file_obj:
            file_obj.write(json.dumps(reward_list))

    def playByQv(self, Qnetwork=None, episode_num=1):
        if Qnetwork == None:
            Qnetwork = self.Qnetwork
        for episode in range(1, episode_num + 1):
            state = self.env.reset()
            while True:
                self.env.render()
                action = self.selectAction(Qnetwork, state, is_train=False)
                state, reward, done, _ = self.env.step(action)
                time.sleep(0.02)
                if done:
                    break

    def plotReward(self, reward_list=None):
        if reward_list == None:
            reward_list = self.reward_list
Esempio n. 15
0
File: main.py Progetto: wuzy38/DQN
 def dqnTrain(self, double=True):
     step = 0
     memory = ReplayMemory(self.MEMORY_CAPACITY_N)
     eval_Qnetwork = QNetwork(self.env.action_space.n, self.LEARNING_RATE)
     target_Qnetwork = QNetwork(self.env.action_space.n, self.LEARNING_RATE)
     eval_Qnetwork.set_weights(self.Qnetwork.get_weights())
     target_Qnetwork.set_weights(eval_Qnetwork.get_weights())
     reward_list = self.reward_list
     time_start = time.time()
     for episode in range(1, self.episode_M + 1):
         episode_reward = 0
         state = self.env.reset()
         while True:
             step += 1
             action = self.selectAction(eval_Qnetwork, state)
             next_state, reward, done, _ = self.env.step(action)
             episode_reward += reward
             memory.add((state, action, reward, next_state, done))
             state = next_state
             if len(memory) > self.BATCH_SIZE:
                 sample_batch = memory.sample(self.BATCH_SIZE)
                 self.updateQNetwork(eval_Qnetwork, target_Qnetwork,
                                     sample_batch, double)
                 # self.EPS = self.EPS*self.EPS_DECAY if self.EPS > self.EPS_MIN else self.EPS_MIN
                 eps_fraction = min(
                     float(step) / self.schedule_timesteps, self.eps_init)
                 self.eps = self.eps_init + eps_fraction * (self.eps_final -
                                                            self.eps_init)
             if step % self.TARGET_UPDATE_C == 0:
                 target_Qnetwork.set_weights(eval_Qnetwork.get_weights())
             if done:
                 break
         reward_list.append(episode_reward)
         print(
             "episode: {}, reward: {}, tot_step: {}, {}min. eps: {}".format(
                 episode, episode_reward, step,
                 (time.time() - time_start) / 60, self.eps))
         if episode % 5 == 0:
             print(
                 "episode {}. recent 5 episode_reward:{}. using {} min. total step: {}. "
                 .format(episode, self.reward_list[-5:],
                         (time.time() - time_start) / 60, step))
         if episode % 50 == 0:
             self.save(target_Qnetwork, reward_list)
     self.Qnetwork.set_weights(target_Qnetwork.get_weights())
     self.reward_list = reward_list
     return target_Qnetwork, reward_list
Esempio n. 16
0
class Brain:
    def __init__(self, params):
        self.num_actions = params['num_actions']
        self.device = params['device']
        self.batch_size = params['batch_size']
        self.learning_rate = params['learning_rate']
        self.gamma = params['gamma']
        self.eps_start = params['eps_start']
        self.eps_end = params['eps_end']
        self.eps_decay = params['eps_decay']
        self.policy_net = QNetwork(self.num_actions).to(self.device)
        self.target_net = QNetwork(self.num_actions).to(self.device)
        self.target_net.load_state_dict(self.policy_net.state_dict())
        self.target_net.eval()
        self.memory = ReplayMemory(params['replay_memory_size'])
        self.optimizer = optim.Adam(self.policy_net.parameters(),
                                    lr=self.learning_rate)
        self.steps_done = 0
        self.q_vals = [0] * self.num_actions
        self.loss = 0

    def decide_action(self, state):
        eps_threshold = self.eps_end + (
            self.eps_start - self.eps_end) * math.exp(
                -1. * self.steps_done / self.eps_decay)
        self.steps_done += 1
        with torch.no_grad():
            self.q_vals = self.policy_net(
                torch.from_numpy(state).float().to(self.device).unsqueeze(0))
        sample = random.random()
        if sample > eps_threshold:
            with torch.no_grad():
                return self.q_vals.max(1)[1].view(1, 1)
        else:
            return torch.tensor([[random.randrange(self.num_actions)]],
                                device=self.device,
                                dtype=torch.long)

    def optimize(self):
        transitions = self.memory.sample(self.batch_size)
        batch = Transition(*zip(*transitions))

        non_final_mask = torch.tensor(tuple(
            map(lambda s: s is not None, batch.next_state)),
                                      device=self.device,
                                      dtype=torch.bool)
        non_final_next_states = torch.cat([
            torch.tensor(s, device=self.device, dtype=torch.float)
            for s in batch.next_state if s is not None
        ])

        state_batch = torch.cat(
            [torch.tensor(batch.state, device=self.device, dtype=torch.float)])
        action_batch = torch.cat(
            [torch.tensor(batch.action, device=self.device, dtype=torch.long)])
        reward_batch = torch.cat(
            [torch.tensor(batch.reward, device=self.device, dtype=torch.int)])

        state_action_values = self.policy_net(state_batch).gather(
            1, action_batch.unsqueeze(1))

        next_state_values = torch.zeros(self.batch_size, device=self.device)

        next_state_values[non_final_mask] = self.target_net(
            non_final_next_states.unsqueeze(1)).max(1)[0].detach()

        expected_state_action_values = (next_state_values *
                                        self.gamma) + reward_batch

        self.loss = F.smooth_l1_loss(state_action_values,
                                     expected_state_action_values.unsqueeze(1))

        self.optimizer.zero_grad()
        self.loss.backward()
        for param in self.policy_net.parameters():
            param.grad.data.clamp_(-1, 1)
        self.optimizer.step()

    def update_target_network(self):
        self.target_net.load_state_dict(self.policy_net.state_dict())
Esempio n. 17
0
def main(env, N_EPISODE=100, MAX_STEPS=300, SUCESS_STEP=200, STOP_MAX_EPISODE=5, EPSILONE_START=1.0, EPSILONE_END=0.01, EPSILONE_DECAY=0.001, GAMMA=0.99, WARMUP=10, MEMORYSIZE=10000, BATCHSIZE=32, PLOT=True):

    def _update_target_parameter(_main_qn, _target_qn):
        _target_qn.model.set_weights(_main_qn.model.get_weights())
        return _target_qn

    def _get_egreedy_actions(epsilon, actions):

        if random.random() < epsilon:
            action_num = actions.shape[1]
            action = random.choice([a for a in range(action_num)])
        else:
            action = np.argmax(actions[0])

        return action

    def _update_parameter(_main_qn, _target_qn, _memory, BATCHSIZE):
        memories = _memory.sample(BATCHSIZE)
        states = np.zeros((BATCHSIZE, statesize))
        targets = np.zeros((BATCHSIZE, actionsize))

        for m_ind, (_state, _action, _reward, _n_state) in enumerate(memories):
            _state_arr = _state.reshape(1, statesize)
            _n_state_arr = _n_state.reshape(1, statesize)
            states[m_ind] = _state_arr

            if not (_n_state_arr == np.zeros((1, statesize))).all(axis=1):
                target = _reward + GAMMA * \
                    np.amax(_target_qn.model.predict(_n_state_arr)[0])

            else:
                target = _reward

            targets[m_ind] = _main_qn.model.predict(_state_arr)
            targets[m_ind][_action] = target

        _main_qn.model.fit(states, targets, epochs=1, verbose=0)

        return _main_qn

    # Get Env parameter
    actionsize = env.get_action_space()
    statesize = env.get_observation_space()

    # Create Network
    main_qn = QNetwork(statesize, actionsize)
    target_qn = QNetwork(statesize, actionsize)

    # Create Memory
    memory = ExperienceReplayd(MEMORYSIZE)

    epsilon = EPSILONE_START

    # Dataholder for plotting
    if PLOT:
        history = {"episode": [], "step": []}

    # Repeat Episode
    total_step = 0
    success_episode = 0
    for i in range(N_EPISODE):
        print("Episode : " + str(i))
        # initialize Env
        state = env.reset()

        # Update target network parameter
        target_qn = _update_target_parameter(main_qn, target_qn)

        # Take actions
        for steps in range(MAX_STEPS):
            total_step += 1
            # Decay Epsilon
            epsilon = EPSILONE_END + \
                (EPSILONE_START - EPSILONE_END) * \
                np.exp(-EPSILONE_DECAY*total_step)
            print("Step : " + str(steps) + " Epsilon : " + str(epsilon))
            state_arr = state.reshape(1, statesize)
            actions = target_qn.model.predict(state_arr)
            choiced_action = _get_egreedy_actions(epsilon, actions)
            n_state, reward, done, info = env.step(choiced_action)

            if done:
                n_state = np.zeros(n_state.shape)

            if steps >= WARMUP:
                m = (state, choiced_action, reward, n_state)
                memory.add(m)

            if memory.get_cnt() > BATCHSIZE:
                main_qn = _update_parameter(
                    main_qn, target_qn, memory, BATCHSIZE)

            if done:
                print("Done:" + str(done))
                success_episode = 0
                break

            state = n_state

            if steps >= SUCESS_STEP - 1:
                success_episode += 1
                print("MAX EPISODE")
                break

        if PLOT:
            history["episode"].append(i)
            history["step"].append(steps)
            epi = history["episode"]
            stp = history["step"]
            plt.plot(epi, stp, 'b')
            plt.title('Max steps per episode')
            plt.legend()
            plt.savefig("plot.png")

        if success_episode >= STOP_MAX_EPISODE:
            print("SUCCESS!!")
            break
Esempio n. 18
0
class Agent:
    def __init__(self,
                 buffer_size=BUFFER_SIZE,
                 batch_size=BATCH_SIZE,
                 lr=LR,
                 epsilon=EPSILON):
        # local network for estimate
        # target network for computing target
        self.batch_size = batch_size
        self.epsilon = epsilon

        self.network_loc = QNetwork()
        self.network_targ = QNetwork()
        setWeights(self.network_loc, self.network_targ)
        self.optimizer = tf.train.AdamOptimizer(learning_rate=lr)

        self.buffer = ReplayBuffer(buffer_size=buffer_size,
                                   batch_size=batch_size)
        self.actions = actionlst()
        self.context_extractor = ContextExtractor()
        self.state_target = None

        # Build model so it knows the input shape
        self.network_loc.build(tf.TensorShape([
            None,
            STATE_LENGTH,
        ]))
        self.network_targ.build(tf.TensorShape([
            None,
            STATE_LENGTH,
        ]))

    def __getState(self, img):
        # Private method to get state from an numpy image
        img_resize = tf.image.resize_images(img,
                                            [VGG_SHAPE, VGG_SHAPE]) / 255.0
        ctx = self.context_extractor(img_resize.numpy())
        color = get_histogram(img)
        return combine(color, ctx)

    def __getAction(self, state, epsilon):
        # Epsilon greedy policy
        # Add batch dimension
        state = np.expand_dims(state, 0)
        predicts = self.network_loc(state)
        action = np.argmax(predicts)
        state = np.squeeze(state, 0)
        random = np.random.choice(12, 1)[0]
        if np.random.random_sample() > (1 - epsilon):
            return random
        else:
            return action

    def clearBuffer(self):
        self.buffer.clear()

    def setTarget(self, target):
        # This should be called at the beginning of
        # each (src, target) pair training
        self.state_target = self.__getState(target)

    def predict(self, img):
        # Given an image, return the updated image
        state_cur = self.__getState(img)
        state_cur = state_cur.astype(np.float32)
        action = self.__getAction(state_cur, 0)
        img_nxt = applyChange(self.actions, action, img)
        return img_nxt, state_cur

    def step(self, img_prev):
        # Given input image as numpy array
        # Return (s,a,s',r) and the img after action

        # 1. Extract features
        state_prev = self.__getState(img_prev)
        state_prev = state_prev.astype(np.float32)

        # 2. Feed to local network and get action
        action = self.__getAction(state_prev, self.epsilon)

        # 3. Apply action and get img_cur, state_cur
        img_cur = applyChange(self.actions, action, img_prev)
        state_cur = self.__getState(img_cur)
        # Only float32 can be feed to network
        state_cur = state_cur.astype(np.float32)

        # 4. Calculate reward
        r = reward(state_prev, state_cur, self.state_target)

        # Return (s,a,s',r) tuple and img_cur
        return (state_prev, action, state_cur, r), img_cur

    def record(self, state_prev, action, state_cur, reward):
        # Save (s,a,s',r) to replay buffer
        self.buffer.add(state_prev, action, state_cur, reward)

    def learn(self):
        # 1. Sample batch from replay buffer
        # Only sample whole batch
        state_ps, actions, state_cs, rs = self.buffer.sample()
        if state_ps.shape[0] == 0:
            return False

        # Debug code
        assert state_ps.shape == (state_ps.shape[0], STATE_LENGTH)
        assert actions.shape == (actions.shape[0], )
        assert state_cs.shape == (state_cs.shape[0], STATE_LENGTH)
        assert rs.shape == (rs.shape[0], )

        # 2. Compute loss based on q_target and q_estimate
        index = []
        for idx, a in enumerate(actions):
            index.append([idx, a])
        with tf.GradientTape() as tape:
            q_est = tf.gather_nd(self.network_loc(state_ps), index)
            q_targ = tf.reduce_max(self.network_targ(state_cs), axis=1)
            target = rs + GAMMA * q_targ
            loss = tf.losses.mean_squared_error(target, q_est)

        # 3. Back prop
        grads = tape.gradient(loss, self.network_loc.variables)
        self.optimizer.apply_gradients(zip(grads, self.network_loc.variables))

        # 4. Soft updates
        self.__soft_update()
        return True

    def __soft_update(self):
        # Slowly update the target network
        # Iterate through all layers and set weights
        for layer_t, layer_loc in \
          zip(self.network_targ.layers, self.network_loc.layers):
            target = layer_t.get_weights()
            loc = layer_loc.get_weights()
            for i in range(len(target)):
                target[i] = (1 - TAU) * target[i] + TAU * loc[i]
            layer_t.set_weights(target)
Esempio n. 19
0
class Agent(object):
    def __init__(self, state_size, action_size, seed, config):
        self.state_size = state_size
        self.action_size = action_size
        self.config = config
        self.seed = random.seed(seed)

        self.local_q_net = QNetwork(state_size, action_size, seed).to(device)
        self.target_q_net = QNetwork(state_size, action_size, seed).to(device)

        self.optimizer = optim.Adam(self.local_q_net.parameters(),
                                    lr=config["LR"])

        self.memory = ReplayBuffer(action_size, config["BUFFER_SIZE"],
                                   config["BATCH_SIZE"], seed)

        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        self.memory.add(state, action, reward, next_state, done)

        self.t_step = (self.t_step + 1) % self.config["UPDATE_EVERY"]

        if self.t_step == 0:
            # if agent experienced enough
            if len(self.memory) > self.config["BATCH_SIZE"]:
                experiences = self.memory.sample()
                # Learn from previous experiences
                self.learn(experiences, self.config["GAMMA"])

    def act(self, state, eps=0.0):
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.local_q_net.eval()
        with torch.no_grad():
            action_values = self.local_q_net(state)
        self.local_q_net.train()

        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        # Double Q Learning

        states, actions, rewards, next_states, dones = experiences

        # Get next action estimation with local q network
        q_targets_next_expected = self.local_q_net(next_states).detach()
        q_targets_next_expected_actions = q_targets_next_expected.max(
            1)[1].unsqueeze(1)

        # Calculate Next Targets
        q_targets_next = self.target_q_net(next_states).gather(
            1, q_targets_next_expected_actions)

        # Non over-estimated targets
        q_targets = rewards + (gamma * q_targets_next * (1 - dones))

        # Expected value
        q_expected = self.local_q_net(states).gather(1, actions)

        loss = torch.nn.functional.mse_loss(q_expected, q_targets)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        self.soft_update(self.local_q_net, self.target_q_net,
                         self.config["TAU"])

    def soft_update(self, local_net, target_net, tau):
        for target_param, local_param in zip(target_net.parameters(),
                                             local_net.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1 - tau) * target_param.data)
Esempio n. 20
0
class Agent:
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0

    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)

        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        def loss_dqn(output, target):
            loss = target - output
            return (target - output)**2

        states, actions, rewards, next_states, dones = experiences

        # Reset gradients
        # Calculate the value of the target in the next state
        pred = self.qnetwork_target(next_states)  # (64, 4)
        target = rewards  # (64, 1)
        for i in range(BATCH_SIZE):
            # Check for dones
            if dones[i] == False:
                target[i] = rewards[i] + GAMMA * torch.max(pred[i])
        # The loss
        output = self.qnetwork_local(states)

        # Use gather in order to have the correct slicing
        output_action_value = output.gather(1, actions.view(-1, 1))
        loss = loss_dqn(output_action_value, target).mean()
        # Reset gradients
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
    def create_network(self):
        """ Creates and initialises the network
        Returns:
            A dict containing the network properties
                 {'input': input, 
                  'output': output, 
                  'target': target, 
                  'action': action, 
                  'training_step': training_step}
        """
        # IO Placeholders
        input = tf.placeholder(tf.float32, shape=[None, 
            self.image_height, self.image_width, self.input_frame_length])

        target = tf.placeholder(tf.float32, shape=[None])
        action = tf.placeholder(tf.float32, shape=[None, self.num_actions])

        # First Layer
        W_conv1 = QNetwork.weight_variable([3, 3, self.input_frame_length, 16])
        b_conv1 = QNetwork.bias_variable([16])

        h_conv1 = tf.nn.relu(QNetwork.conv2d(input, W_conv1) + b_conv1)
        h_pool1 = QNetwork.max_pool_2x2(h_conv1)

        # Second Layer
        W_conv2 = QNetwork.weight_variable([3, 3, 
            16, 32])
        b_conv2 = QNetwork.bias_variable([32])

        h_conv2 = tf.nn.relu(QNetwork.conv2d(h_pool1, W_conv2) + b_conv2)
        h_pool2 = QNetwork.max_pool_2x2(h_conv2)

        # Fourth Layer
        W_fc1 = QNetwork.weight_variable([((self.image_height / 4) * (self.image_width / 4) * 32), 256])
        b_fc1 = QNetwork.bias_variable([256])

        h_pool2_flat = tf.reshape(h_pool2, [-1, (self.image_height / 4) * (self.image_width / 4) * 32])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

        # Fith Layer
        W_fc2 = QNetwork.weight_variable([256, self.num_actions])
        b_fc2 = QNetwork.bias_variable([self.num_actions])
        
        output = tf.matmul(h_fc1, W_fc2) + b_fc2

        # Train and Eval Steps 
        action_value = tf.reduce_sum(tf.mul(output, action), reduction_indices = 1)
        error = tf.reduce_mean(tf.square(target - action_value))
        training_step = tf.train.AdamOptimizer(1e-6).minimize(error)
        
        QNetwork.variable_summaries(output, 'output')
        QNetwork.variable_summaries(error, 'error')
        QNetwork.variable_summaries(W_fc2, 'final_weights')
        
        return {'input': input, 
                'output': output, 
                'target': target, 
                'action': action, 
                'training_step': training_step}