def run(checkpoint=None, dir=CHECKPOINT_DIR):
    gc.collect()
    batch_size = 1
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # torch.autograd.set_detect_anomaly(True)
    clean_train_loader = DataLoader(clean_train_data,
                                    batch_size=batch_size,
                                    shuffle=True,
                                    num_workers=2,
                                    pin_memory=True)
    clean_test_loader = DataLoader(clean_test_data,
                                   batch_size=batch_size,
                                   shuffle=False,
                                   num_workers=2,
                                   pin_memory=True)

    if checkpoint:
        model = load_checkpoint(checkpoint, dir=dir).to(device)
    else:
        model = RNN(hidden_size=80,
                    output_size=5,
                    n_layers=2,
                    batch_size=batch_size,
                    bidirectional=False).to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    loss = torch.nn.CrossEntropyLoss()

    losses = train(clean_train_loader,
                   clean_test_loader,
                   500,
                   model,
                   optimizer,
                   loss,
                   device,
                   checkpoint_dir=CHECKPOINT_DIR)
    return model, losses
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable
from dataset import dataset, dataset2
from network import RNN
import os
model_dir = '/home/lixiaoyu/project/airQuality/Analysis-of-Air-Quality-and-Outpatient-Quantity/ckpt/'

TIME_STEP = 120
INPUT_SIZE = 7
HIDDEN_SIZE = 32
LR = 0.01
EPOCH = 1000

rnn = RNN(INPUT_SIZE=INPUT_SIZE, HIDDEN_SIZE=HIDDEN_SIZE)
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)
loss_func = nn.MSELoss()

LoadModel = False


def train(train_loader, num_e):
    torch.manual_seed(1)
    if LoadModel:
        checkpoint = torch.load(model_dir + '{}.ckpt'.format(num_e))
        rnn.load_state_dict(checkpoint['state_dict'])
        print('Loading model~~~~~~~~~~', num_e)

    for e in range(EPOCH):
        print('epoch>>>>>>> ', e)
        rnn.train()
Esempio n. 3
0
File: main.py Progetto: yk287/NLP
opts = options.parse()

#data loader
data_loader = data.dataloader(opts)
train_loader = util.create_dataset(data_loader.train_data,
                                   data_loader.letteridx, data_loader.labelidx,
                                   opts)
test_loader = util.create_dataset(data_loader.test_data, data_loader.letteridx,
                                  data_loader.labelidx, opts)

from network import RNN
from train import trainer
from test import tester
'''RNN model'''
RNN = RNN(opts, data_loader.letteridx).to(device)

if opts.print_model:
    print(RNN)
'''Optimizers'''
import torch.optim as optim

RNN_optim = optim.Adam(RNN.parameters(),
                       lr=opts.lr,
                       betas=(opts.beta1, opts.beta2))
'''Criterion'''
criterion = nn.NLLLoss()
'''run training'''
trainer(opts, RNN, RNN_optim, criterion, train_loader)
'''test'''
tester(opts, RNN, test_loader)
Esempio n. 4
0
test_labels = onehot_sequence(th.from_numpy(test_labels), 10, cuda)
test_set = TensorDataset(test_data, test_labels)
test_loader = DataLoader(test_set, args.batch_size)

cnn_path = args.pretrained_cnn_path if args.pretrained_cnn else None
model = RNN(args.n_units, 10, cnn_path, cuda)
if args.gpu > -1:
  model.cuda()
if args.criterion == 'regression_loss':
  from criterions import regression_loss
  criterion = regression_loss(args.entropy_scale)
else:
  criterion = getattr(__import__('criterions'), args.criterion)()
if args.gpu > -1:
  criterion.cuda()
optimizer = Adam(model.parameters(), lr=1e-3)
vis = visdom.Visdom()
tb_path = args.tensorboard_path
if args.tensorboard_log:
  tb_path += '/%s' % args.tensorboard_log
TensorboardVisualizer.configure(tb_path)
loss_list = []
ratio_list = []
if not args.disable_tensorboard:
  loss_tb = TensorboardVisualizer('loss' + args.tensorboard_postfix)
  ratio_tb = TensorboardVisualizer('training accuracy' + args.tensorboard_postfix)
  validation_tb = TensorboardVisualizer('validation accuracy' + args.tensorboard_postfix)
if not args.disable_visdom:
  loss_vis = VisdomVisualizer(vis, {'title': 'loss'})
  ratio_vis = VisdomVisualizer(vis, {'title': 'training accuracy'})
  validation_vis = VisdomVisualizer(vis, {'title': 'validation accuracy'})