def test_compare_with_Linear(self): in_size = 2 out_size = 3 x = np.random.rand(in_size) # x = np.array([1., 1]) optimizer = SGD(0.1) linear = Linear(in_size, out_size, initialize='zeros') wx = Wx(in_size, out_size, initialize='zeros') plusbias = PlusBias(out_size, initialize='zeros') wxbias = Seq(wx, plusbias) linear_y = linear.forward(x) wxbias_y = wxbias.forward(x) assert_array_equal(linear_y, wxbias_y) dJdy = np.random.rand(out_size) linear_grad = linear.backward(dJdy) wxbias_grad = wxbias.backward(dJdy) assert_array_equal(linear_grad, wxbias_grad) linear.update_weights(optimizer) wxbias.update_weights(optimizer) stack = np.vstack([plusbias.b.get(), wx.W.get().T]).T assert_array_equal(linear.W, stack)
def test_update_weights_layer_vs_syntax(self): x = np.array([1., 2., 3.]) optimizer = SGD(0.1) W = np.random.rand(3, 3 + 1) linear_layer = layers.Linear(3, 3, initialize=W.copy()) linear_layer_model = Seq(linear_layer, layers.Tanh) y = linear_layer_model.forward(x) back = linear_layer_model.backward(np.ones(3)) var_x = Var('x') syntax_linear = Linear(3, 3, initialize=W.copy(), input=var_x) syntax_model = Tanh(syntax_linear) syntax_y = syntax_model.forward_variables({'x': x}) syntax_back = syntax_model.backward_variables(np.ones(3)) assert_array_equal(linear_layer.delta_W, syntax_linear.layer.delta_W) # update weights in both models linear_layer_model.update_weights(optimizer) syntax_model.update_weights(optimizer) assert_array_equal(y, syntax_y) assert_array_equal(back, syntax_back['x']) assert_array_equal(linear_layer.W, syntax_linear.layer.W)
class WxBiasLinear(Layer): def __init__(self, in_size, out_size, initialize_W, initialize_b): self.Wx = Wx(in_size, out_size, initialize_W) self.bias = PlusBias(out_size, initialize_b) self.model = Seq(self.Wx, self.bias) def forward(self, x, is_training=False): return self.model.forward(x, is_training) def backward(self, dJdy): return self.model.backward(dJdy) def update_weights(self, optimizer): return self.model.update_weights(optimizer)