Esempio n. 1
0
def main():
    # create an instance of Network class:
    network = nm.Network(CUR_DIR)

    config_dict = network.get_config_dict()

    SEED = int(config_dict['SEED'])
    USER_SEED = int(config_dict['USER_SEED'])

    #load network topology and parameter ranges:
    mode = network.process_network(USER_SEED, SEED)

    #fname_params_prefix = CUR_DIR + '/cellcycle.'
    fname_params_prefix = CUR_DIR + '/repressilator.'
    fname_models = CUR_DIR + '/models.txt'
    #fname_models = CUR_DIR + '/model_list.5.txt'
    #fname_models = CUR_DIR + '/models.bistable.txt'

    #import model ids from the input file:
    with open(fname_models, 'r') as fh_models:
        content = fh_models.read()
    models = content.strip().split("\n")

    MODELS_TO_INSPECT = list(map(int, models))

    #import perturbed params from the params file as an ordered dictionary:
    #(parameters are perturbed in an R function)
    model_params_dict = ma.import_model_params(fname_params_prefix, \
                                            network, MODELS_TO_INSPECT)

    # generate models using perturbed parameters and random ICs:
    # (number of random ICs can be set in racipe.cfg)
    mg.generate_models_random_ICs(network, model_params_dict)

    return None
def main():
    # create an instance of Network class:
    network = nm.Network(CUR_DIR)

    config_dict = network.get_config_dict()

    SEED = int(config_dict['SEED'])
    USER_SEED = int(config_dict['USER_SEED'])

    #load network topology and parameter ranges:
    mode = network.process_network(USER_SEED, SEED)

    #fname_params_prefix = CUR_DIR + '/cellcycle.'
    fname_params_prefix = CUR_DIR + '/emt.'
    fname_models = CUR_DIR + '/models.txt'

    # name of the file containing steady states and cluster number:
    #fname_sstate = fname_params_prefix + 'states.unnormed.txt'
    fname_sstate = fname_params_prefix + 'states.clustered.txt'

    #import model ids from the input file:
    with open(fname_models, 'r') as fh_models:
        content = fh_models.read()
    models = content.strip().split("\n")

    #print(models)

    MODELS_TO_INSPECT = list(map(int, models))

    #import perturbed params from the params file as an ordered dictionary:
    #(parameters are perturbed in an R function)
    model_params_dict = ma.import_model_params(fname_params_prefix, \
                                            network, MODELS_TO_INSPECT)

    # Import starting state
    # ---------------------
    CLUSTER_NO = 1
    sstate_dict = ma.import_states_byCluster(fname_sstate, \
                                             network, \
                                             MODELS_TO_INSPECT,
                                             CLUSTER_NO)

    # Import starting state
    # ---------------------
    CLUSTER_NO = 2
    estate_dict = ma.import_states_byCluster(fname_sstate, \
                                             network, \
                                             MODELS_TO_INSPECT,
                                             CLUSTER_NO)

    # Generate trajectory of the models from E to M
    # --------------------------------------------
    #mg.generate_e2m_traj_mpr_signal(network, model_params_dict, sstate_dict)
    SIGNALING_NODE_ID = 8
    FCHANGE = 2**-8  #2**-9 #2**(-10) #2**(-64) #2**(-32) #2**(-16)- phase.32
    mg.generate_traj_decr_sig_gradually(network, model_params_dict, estate_dict, \
                                        SIGNALING_NODE_ID, FCHANGE)
    return None
def main():
    # create an instance of Network class:
    network = nm.Network(CUR_DIR)

    config_dict = network.get_config_dict()

    SEED = int(config_dict['SEED'])
    USER_SEED = int(config_dict['USER_SEED'])

    #load network topology and parameter ranges:
    mode = network.process_network(USER_SEED, SEED)

    #fname_params_prefix = CUR_DIR + '/cellcycle.'
    fname_params_prefix = CUR_DIR + '/emt.'
    fname_models = CUR_DIR + '/models.txt'

    # name of the file containing steady states and cluster number:
    #fname_sstate = fname_params_prefix + 'states.unnormed.txt'
    fname_sstate = fname_params_prefix + 'states.clustered.txt'

    #import model ids from the input file:
    with open(fname_models, 'r') as fh_models:
        content = fh_models.read()
    models = content.strip().split("\n")

    #print(models)

    MODELS_TO_INSPECT = list(map(int, models))

    #import perturbed params from the params file as an ordered dictionary:
    #(parameters are perturbed in an R function)
    model_params_dict = ma.import_model_params(fname_params_prefix, \
                                            network, MODELS_TO_INSPECT)

    #print(MODELS_TO_INSPECT)
    #print(len(model_params_dict.keys()))
    #print(model_params_dict.keys())

    #sys.exit(0)
    #for k in model_params_dict.keys():
    #    print(k)
    #    print(model_params_dict[k])
    #    break

    # Import starting state
    # ---------------------
    CLUSTER_NO = 1
    sstate_dict = ma.import_states_byCluster(fname_sstate, \
                                             network, \
                                             MODELS_TO_INSPECT,
                                             CLUSTER_NO)

    #print(len(start_state_dict.keys()))
    #print(start_state_dict.keys())

    #for k in start_state_dict.keys():
    #    print(k)
    #    print(np.log2(start_state_dict[k]))
    #    break

    # Import starting state
    # ---------------------
    CLUSTER_NO = 2
    estate_dict = ma.import_states_byCluster(fname_sstate, \
                                             network, \
                                             MODELS_TO_INSPECT,
                                             CLUSTER_NO)
    #print(len(end_state_dict.keys()))
    #print(end_state_dict.keys())

    #for k in end_state_dict.keys():
    #    print(k)
    #    print(np.log2(end_state_dict[k]))
    #    break

    # generate models using perturbed parameters and steady state as IC:
    #mg.generate_models_sstate(network, model_params_dict, sstate_dict)
    mg.generate_models_signaled_sstate(network, model_params_dict, sstate_dict)

    return None
Esempio n. 4
0
def main():
    # create an instance of Network class: 
    network=nm.Network(CUR_DIR) 

    config_dict=network.get_config_dict()

    SEED=int(config_dict['SEED'])
    USER_SEED=int(config_dict['USER_SEED'])

    #load network topology and parameter ranges:
    mode=network.process_network(USER_SEED, SEED)

    #fname_params_prefix = CUR_DIR + '/cellcycle.'
    fname_params_prefix = CUR_DIR + '/tswitch.'
    fname_models = CUR_DIR + '/models.txt'

    # name of the file containing steady states and cluster number:
    #fname_sstate = fname_params_prefix + 'states.unnormed.txt'
    fname_sstate = fname_params_prefix + 'states.clustered.txt'


    #import model ids from the input file:
    with open(fname_models, 'r') as fh_models:
        content = fh_models.read()
    models = content.strip().split("\n")

    #print(models)

    MODELS_TO_INSPECT = list(map(int, models))

    #import perturbed params from the params file as an ordered dictionary:
    #(parameters are perturbed in an R function)
    model_params_dict = ma.import_model_params(fname_params_prefix, \
                                            network, MODELS_TO_INSPECT)

    # Import starting state
    # ---------------------
    CLUSTER_NO=1
    sstate_dict = ma.import_states_byCluster(fname_sstate, \
                                             network, \
                                             MODELS_TO_INSPECT, 
                                             CLUSTER_NO)

    # Import starting state
    # ---------------------
    CLUSTER_NO=2
    estate_dict = ma.import_states_byCluster(fname_sstate, \
                                             network, \
                                             MODELS_TO_INSPECT, 
                                             CLUSTER_NO)

    # Comment about expressions: already antilog transformed
    
    #print(sstate_dict.keys())
    #print(sstate_dict.values())
    #for k,v in sstate_dict.items():
    #    print(k)
    #    print(v)
    #    break

    #sys.exit(0)
    # generate trajectory of the models from E to M
    # --------------------------------------------
    FCHANGE = 2**1.5 # phase 01
    SIGNALING_NODE_ID = 2
    mg.generate_traj_incr_sig_gradually(network, model_params_dict, sstate_dict, \
                                        SIGNALING_NODE_ID, FCHANGE)
    return None