Esempio n. 1
0
def create_model(num_classes):
    # 创建retinanet_res50_fpn模型
    # skip P2 because it generates too many anchors (according to their paper)
    # 注意,这里的backbone默认使用的是FrozenBatchNorm2d,即不会去更新bn参数
    # 目的是为了防止batch_size太小导致效果更差(如果显存很小,建议使用默认的FrozenBatchNorm2d)
    # 如果GPU显存很大可以设置比较大的batch_size就可以将norm_layer设置为普通的BatchNorm2d
    backbone = resnet50_fpn_backbone(norm_layer=torch.nn.BatchNorm2d,
                                     returned_layers=[2, 3, 4],
                                     extra_blocks=LastLevelP6P7(256, 256),
                                     trainable_layers=3)
    model = RetinaNet(backbone, num_classes)

    # 载入预训练权重
    # https://download.pytorch.org/models/retinanet_resnet50_fpn_coco-eeacb38b.pth
    weights_dict = torch.load("./backbone/retinanet_resnet50_fpn.pth",
                              map_location='cpu')
    # 删除分类器部分的权重,因为自己的数据集类别与预训练数据集类别(91)不一定致,如果载入会出现冲突
    del_keys = [
        "head.classification_head.cls_logits.weight",
        "head.classification_head.cls_logits.bias"
    ]
    for k in del_keys:
        del weights_dict[k]
    print(model.load_state_dict(weights_dict, strict=False))

    return model
Esempio n. 2
0
def create_model(num_classes):
    # resNet50+fpn+retinanet
    # 注意,这里的norm_layer要和训练脚本中保持一致
    backbone = resnet50_fpn_backbone(norm_layer=torch.nn.BatchNorm2d,
                                     returned_layers=[2, 3, 4],
                                     extra_blocks=LastLevelP6P7(256, 256))
    model = RetinaNet(backbone, num_classes)

    return model
Esempio n. 3
0
def main(parser_data):
    device = torch.device(
        parser_data.device if torch.cuda.is_available() else "cpu")
    print("Using {} device training.".format(device.type))

    data_transform = {"val": transforms.Compose([transforms.ToTensor()])}

    # read class_indict
    label_json_path = './pascal_voc_classes.json'
    assert os.path.exists(
        label_json_path), "json file {} dose not exist.".format(
            label_json_path)
    json_file = open(label_json_path, 'r')
    class_dict = json.load(json_file)
    category_index = {v: k for k, v in class_dict.items()}

    VOC_root = parser_data.data_path
    # check voc root
    if os.path.exists(os.path.join(VOC_root, "VOCdevkit")) is False:
        raise FileNotFoundError(
            "VOCdevkit dose not in path:'{}'.".format(VOC_root))

    # 注意这里的collate_fn是自定义的,因为读取的数据包括image和targets,不能直接使用默认的方法合成batch
    batch_size = parser_data.batch_size
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0,
              8])  # number of workers
    print('Using %g dataloader workers' % nw)

    # load validation data set
    val_data_set = VOC2012DataSet(VOC_root, data_transform["val"], "val.txt")
    val_data_set_loader = torch.utils.data.DataLoader(
        val_data_set,
        batch_size=batch_size,
        shuffle=False,
        num_workers=nw,
        collate_fn=val_data_set.collate_fn)

    # create model num_classes equal background + 20 classes
    # 注意,这里的norm_layer要和训练脚本中保持一致
    backbone = resnet50_fpn_backbone(norm_layer=torch.nn.BatchNorm2d,
                                     returned_layers=[2, 3, 4],
                                     extra_blocks=LastLevelP6P7(256, 256))
    model = RetinaNet(backbone, parser_data.num_classes + 1)

    # 载入你自己训练好的模型权重
    weights_path = parser_data.weights
    assert os.path.exists(weights_path), "not found {} file.".format(
        weights_path)
    weights_dict = torch.load(weights_path, map_location=device)
    model.load_state_dict(weights_dict['model'])
    # print(model)

    model.to(device)

    # evaluate on the test dataset
    coco = get_coco_api_from_dataset(val_data_set)
    iou_types = ["bbox"]
    coco_evaluator = CocoEvaluator(coco, iou_types)
    cpu_device = torch.device("cpu")

    model.eval()
    with torch.no_grad():
        for image, targets in tqdm(val_data_set_loader, desc="validation..."):
            # 将图片传入指定设备device
            image = list(img.to(device) for img in image)

            # inference
            outputs = model(image)

            outputs = [{k: v.to(cpu_device)
                        for k, v in t.items()} for t in outputs]
            res = {
                target["image_id"].item(): output
                for target, output in zip(targets, outputs)
            }
            coco_evaluator.update(res)

    coco_evaluator.synchronize_between_processes()

    # accumulate predictions from all images
    coco_evaluator.accumulate()
    coco_evaluator.summarize()

    coco_eval = coco_evaluator.coco_eval["bbox"]
    # calculate COCO info for all classes
    coco_stats, print_coco = summarize(coco_eval)

    # calculate voc info for every classes(IoU=0.5)
    voc_map_info_list = []
    for i in range(len(category_index)):
        stats, _ = summarize(coco_eval, catId=i)
        voc_map_info_list.append(" {:15}: {}".format(category_index[i + 1],
                                                     stats[1]))

    print_voc = "\n".join(voc_map_info_list)
    print(print_voc)

    # 将验证结果保存至txt文件中
    with open("record_mAP.txt", "w") as f:
        record_lines = [
            "COCO results:", print_coco, "", "mAP(IoU=0.5) for each category:",
            print_voc
        ]
        f.write("\n".join(record_lines))