def write_to_file(self,
                      data_dict,
                      output_file_path):
        """write_to_file

        :param data_dict:
        :param output_file_path:
        """

        log.info("saving={}".format(output_file_path))
        with open(output_file_path, "w") as output_file:
            output_file.write(str(ppj(data_dict)))
Esempio n. 2
0
def build_csv(
        pipeline_files=[],
        fulldata_file=None,
        clean_file=None,
        post_proc_rules=None,
        label_rules=None,
        metadata_filename="metadata.json"):
    """build_csv

    :param pipeline_files: files to process
    :param fulldata_file: output all columns to this csv file
    :param clean_file: output all numeric-ready columns to this csv file
    :param post_proc_rules: rules after building the DataFrame
    :param label_rules: labeling rules
    :param metadata_filename: metadata
    """

    save_node = {
        "status": INVALID,
        "pipeline_files": pipeline_files,
        "post_proc_rules": post_proc_rules,
        "label_rules": label_rules,
        "fulldata_file": fulldata_file,
        "fulldata_metadata_file": None,
        "clean_file": clean_file,
        "clean_metadata_file": None,
        "features_to_process": [],
        "feature_to_predict": None,
        "ignore_features": [],
        "df_json": {}
    }

    if not fulldata_file:
        log.error("missing fulldata_file - stopping")
        save_node["status"] = INVALID
        return save_node
    if not clean_file:
        log.error("missing clean_file - stopping")
        save_node["status"] = INVALID
        return save_node

    log.info("build_csv - START")

    common_headers, \
        headers_dict = find_all_headers(
                            pipeline_files=pipeline_files)

    log.info(("num common_headers={} headers={}")
             .format(len(common_headers),
                     common_headers))

    # since the headers can be different we rebuild a new one:

    hdrs = {}
    for h in common_headers:
        hdrs[h] = None

    features_to_process = []
    feature_to_predict = None
    ignore_features = []

    set_if_above = None
    labels = []
    label_values = []
    if label_rules:
        set_if_above = label_rules["set_if_above"]
        labels = label_rules["labels"]
        label_values = label_rules["label_values"]

    all_rows = []
    num_done = 0
    total_files = len(pipeline_files)
    for c in pipeline_files:
        log.info(("merging={}/{} csv={}")
                 .format(num_done,
                         total_files,
                         c))
        cf = pd.read_csv(c)
        log.info((" processing rows={}")
                 .format(len(cf.index)))
        for index, row in cf.iterrows():
            valid_row = True
            new_row = copy.deepcopy(hdrs)
            new_row["src_file"] = c
            for k in hdrs:
                if k in row:
                    new_row[k] = row[k]
            # end of for all headers to copy in

            if label_rules:
                test_rand = random.randint(0, 100)
                if test_rand > set_if_above:
                    new_row["label_value"] = label_values[1]
                    new_row["label_name"] = labels[1]
                else:
                    new_row["label_value"] = label_values[0]
                    new_row["label_name"] = labels[0]
            # end of applying label rules

            if valid_row:
                all_rows.append(new_row)
        # end of for all rows in this file

        num_done += 1
    # end of building all files into one list

    log.info(("fulldata rows={} generating df")
             .format(len(all_rows)))
    df = pd.DataFrame(all_rows)
    log.info(("df rows={} headers={}")
             .format(len(df.index),
                     df.columns.values))

    if ev("CONVERT_DF",
          "0") == "1":
        log.info("converting df to json")
        save_node["df_json"] = df.to_json()

    if clean_file:
        log.info(("writing fulldata_file={}")
                 .format(fulldata_file))
        df.to_csv(fulldata_file,
                  sep=',',
                  encoding='utf-8',
                  index=False)
        log.info(("done writing fulldata_file={}")
                 .format(fulldata_file))

        if post_proc_rules:

            clean_metadata_file = ""

            feature_to_predict = "label_name"
            features_to_process = []
            ignore_features = []
            if label_rules:
                ignore_features = [feature_to_predict]

            if "drop_columns" in post_proc_rules:
                for p in post_proc_rules["drop_columns"]:
                    if p in headers_dict:
                        ignore_features.append(p)
                # post proce filter more features out
                # for non-int/float types

                for d in df.columns.values:
                    add_this_one = True
                    for i in ignore_features:
                        if d == i:
                            add_this_one = False
                            break
                    if add_this_one:
                        features_to_process.append(d)
                # for all df columns we're not ignoring...
                # add them as features to process

                fulldata_metadata_file = "{}/fulldata_{}".format(
                    "/".join(fulldata_file.split("/")[:-1]),
                    metadata_filename)
                log.info(("writing fulldata metadata file={}")
                         .format(fulldata_metadata_file))
                header_data = {"headers": list(df.columns.values),
                               "output_type": "fulldata",
                               "pipeline_files": pipeline_files,
                               "post_proc_rules": post_proc_rules,
                               "label_rules": label_rules,
                               "features_to_process": features_to_process,
                               "feature_to_predict": feature_to_predict,
                               "ignore_features": ignore_features,
                               "created": rnow()}

                with open(fulldata_metadata_file, "w") as otfile:
                    otfile.write(str(ppj(header_data)))

                keep_these = features_to_process
                keep_these.append(feature_to_predict)

                log.info(("creating new clean_file={} "
                          "keep_these={} "
                          "predict={}")
                         .format(clean_file,
                                 keep_these,
                                 feature_to_predict))

                # need to remove all columns that are all nan
                clean_df = df[keep_these].dropna(
                                axis=1, how='all').dropna()

                cleaned_features = clean_df.columns.values
                cleaned_to_process = []
                cleaned_ignore_features = []
                for c in cleaned_features:
                    if c == feature_to_predict:
                        cleaned_ignore_features.append(c)
                    else:
                        keep_it = True
                        for ign in ignore_features:
                            if c == ign:
                                cleaned_ignore_features.append(c)
                                keep_it = False
                                break
                        # end of for all feaures to remove
                        if keep_it:
                            cleaned_to_process.append(c)
                # end of new feature columns

                log.info(("writing DROPPED clean_file={} "
                          "features_to_process={} "
                          "ignore_features={} "
                          "predict={}")
                         .format(clean_file,
                                 cleaned_to_process,
                                 cleaned_ignore_features,
                                 feature_to_predict))

                write_clean_df = clean_df.drop(
                    columns=cleaned_ignore_features
                )
                log.info(("cleaned_df rows={}")
                         .format(len(write_clean_df.index)))
                write_clean_df.to_csv(
                         clean_file,
                         sep=',',
                         encoding='utf-8',
                         index=False)

                clean_metadata_file = "{}/cleaned_{}".format(
                    "/".join(clean_file.split("/")[:-1]),
                    metadata_filename)
                log.info(("writing clean metadata file={}")
                         .format(clean_metadata_file))
                header_data = {"headers": list(write_clean_df.columns.values),
                               "output_type": "clean",
                               "pipeline_files": pipeline_files,
                               "post_proc_rules": post_proc_rules,
                               "label_rules": label_rules,
                               "features_to_process": cleaned_to_process,
                               "feature_to_predict": feature_to_predict,
                               "ignore_features": cleaned_ignore_features,
                               "created": rnow()}
                with open(clean_metadata_file, "w") as otfile:
                    otfile.write(str(ppj(header_data)))
            else:

                for d in df.columns.values:
                    add_this_one = True
                    for i in ignore_features:
                        if d == i:
                            add_this_one = False
                            break
                    if add_this_one:
                        features_to_process.append(d)
                # for all df columns we're not ignoring...
                # add them as features to process

                fulldata_metadata_file = "{}/fulldata_{}".format(
                    "/".join(fulldata_file.split("/")[:-1]),
                    metadata_filename)
                log.info(("writing fulldata metadata file={}")
                         .format(fulldata_metadata_file))
                header_data = {"headers": list(df.columns.values),
                               "output_type": "fulldata",
                               "pipeline_files": pipeline_files,
                               "post_proc_rules": post_proc_rules,
                               "label_rules": label_rules,
                               "features_to_process": features_to_process,
                               "feature_to_predict": feature_to_predict,
                               "ignore_features": ignore_features,
                               "created": rnow()}

                with open(fulldata_metadata_file, "w") as otfile:
                    otfile.write(str(ppj(header_data)))

                keep_these = features_to_process
                keep_these.append(feature_to_predict)

                log.info(("creating new clean_file={} "
                          "keep_these={} "
                          "predict={}")
                         .format(clean_file,
                                 keep_these,
                                 feature_to_predict))

                # need to remove all columns that are all nan
                clean_df = df[keep_these].dropna(
                                axis=1, how='all').dropna()

                cleaned_features = clean_df.columns.values
                cleaned_to_process = []
                cleaned_ignore_features = []
                for c in cleaned_features:
                    if c == feature_to_predict:
                        cleaned_ignore_features.append(c)
                    else:
                        keep_it = True
                        for ign in ignore_features:
                            if c == ign:
                                cleaned_ignore_features.append(c)
                                keep_it = False
                                break
                        # end of for all feaures to remove
                        if keep_it:
                            cleaned_to_process.append(c)
                # end of new feature columns

                log.info(("writing DROPPED clean_file={} "
                          "features_to_process={} "
                          "ignore_features={} "
                          "predict={}")
                         .format(clean_file,
                                 cleaned_to_process,
                                 cleaned_ignore_features,
                                 feature_to_predict))

                write_clean_df = clean_df.drop(
                    columns=cleaned_ignore_features
                )
                log.info(("cleaned_df rows={}")
                         .format(len(write_clean_df.index)))
                write_clean_df.to_csv(
                         clean_file,
                         sep=',',
                         encoding='utf-8',
                         index=False)

                clean_metadata_file = "{}/cleaned_{}".format(
                    "/".join(clean_file.split("/")[:-1]),
                    metadata_filename)
                log.info(("writing clean metadata file={}")
                         .format(clean_metadata_file))
                header_data = {"headers": list(write_clean_df.columns.values),
                               "output_type": "clean",
                               "pipeline_files": pipeline_files,
                               "post_proc_rules": post_proc_rules,
                               "label_rules": label_rules,
                               "features_to_process": cleaned_to_process,
                               "feature_to_predict": feature_to_predict,
                               "ignore_features": cleaned_ignore_features,
                               "created": rnow()}
                with open(clean_metadata_file, "w") as otfile:
                    otfile.write(str(ppj(header_data)))

            # end of if/else

            save_node["clean_file"] = clean_file
            save_node["clean_metadata_file"] = clean_metadata_file

            log.info(("done writing clean_file={}")
                     .format(clean_file))
        # end of post_proc_rules

        save_node["fulldata_file"] = fulldata_file
        save_node["fulldata_metadata_file"] = fulldata_metadata_file

        save_node["status"] = VALID
    # end of writing the file

    save_node["features_to_process"] = features_to_process
    save_node["feature_to_predict"] = feature_to_predict
    save_node["ignore_features"] = ignore_features

    log.info("build_csv - END")

    return save_node
Esempio n. 3
0
def prepare_new_dataset():
    """prepare_new_dataset"""
    clean_dir = ev(
        "OUTPUT_DIR",
        "/tmp")
    clean_file = ev(
        "CLEANED_FILE",
        "{}/cleaned_attack_scans.csv".format(
            clean_dir))
    fulldata_file = ev(
        "FULLDATA_FILE",
        "{}/fulldata_attack_scans.csv".format(
            clean_dir))
    dataset_dir = ev(
        "DS_DIR",
        "/opt/antinex/datasets")
    csv_glob_path = ev(
        "DS_GLOB_PATH",
        "{}/*/*.csv".format(
            dataset_dir))

    pipeline_files = find_all_pipeline_csvs(
        csv_glob_path=csv_glob_path)

    post_proc_rules = {
        "drop_columns": [
            "src_file",
            "raw_id",
            "raw_load",
            "raw_hex_load",
            "raw_hex_field_load",
            "pad_load",
            "eth_dst",  # need to make this an int
            "eth_src",  # need to make this an int
            "ip_dst",   # need to make this an int
            "ip_src"    # need to make this an int
        ],
        "predict_feature": "label_name"
    }

    label_rules = {
        "set_if_above": 85,
        "labels": ["not_attack", "attack"],
        "label_values": [0, 1]
    }

    log.info("building csv")

    save_node = build_csv(
        pipeline_files=pipeline_files,
        fulldata_file=fulldata_file,
        clean_file=clean_file,
        post_proc_rules=post_proc_rules,
        label_rules=label_rules)

    if save_node["status"] == VALID:
        log.info("Successfully process datasets:")

        if ev("SHOW_SUMMARY", "1") == "1":
            log.info(("Full csv: {}")
                     .format(save_node["fulldata_file"]))
            log.info(("Full meta: {}")
                     .format(save_node["fulldata_metadata_file"]))
            log.info(("Clean csv: {}")
                     .format(save_node["clean_file"]))
            log.info(("Clean meta: {}")
                     .format(save_node["clean_metadata_file"]))
            log.info("------------------------------------------")
            log.info(("Predicting Feature: {}")
                     .format(save_node["feature_to_predict"]))
            log.info(("Features to Process: {}")
                     .format(ppj(save_node["features_to_process"])))
            log.info(("Ignored Features: {}")
                     .format(ppj(save_node["ignore_features"])))
            log.info("------------------------------------------")
        # end of show summary

        log.info("")
        log.info("done saving csv:")
        log.info("Full: {}".format(
            save_node["fulldata_file"]))
        log.info("Cleaned (no-NaNs in columns): {}".format(
            save_node["clean_file"]))
        log.info("")
    else:
        log.info("Failed to process datasets")
    def handle_msg(self,
                   body,
                   org_message):
        """handle_msg

        :param body: dictionary contents from the message body
        :param org_message: message object can ack, requeue or reject
        """

        if os.path.exists(self.stop_for_file):
            log.info(("Detected stop_file={} "
                      "shutting down")
                     .format(self.stop_for_file))

            # drop the message back in the queue
            # for next time
            org_message.requeue()

            sys.exit(1)
        # end of stop file detection

        try:

            log.debug(("handle body={}")
                      .format(ppj(body)))

            msg = body
            id = build_packet_key()
            recv_time = rnow()

            # this could be made into celery tasks...

            flat_msg = self.build_flat_msg(
                            id=id,
                            msg=msg)

            if not flat_msg:
                log.error(("Failed to build a flat message "
                           "for message={}")
                          .format(msg))
                return

            msg["id"] = id
            msg["received"] = recv_time
            if len(flat_msg) > 0:
                if self.debug:
                    log.info(ppj(flat_msg))
                flat_msg["id"] = id
                flat_msg["received"] = recv_time
                self.all_flat.append(flat_msg)
                self.recv_msgs.append(msg)
            # end of adding all flat messages

            already_saved = False
            num_recv = len(self.recv_msgs)
            if (num_recv % self.save_after_num) == 0:
                already_saved = False
                self.save_data()
            # end of saving a snapshot

            if self.stop_after_num:
                if num_recv >= self.stop_after_num:
                    if not already_saved:
                        self.save_data()
                    # avoid waiting on the save again
                    log.info("archive successful - purging buffer")
                    sys.exit(2)
                # shutdown - good for testing
            # if now set up for infinite consuming

        except Exception as e:
            log.error(("Failed processing msg={} "
                       "ex={}")
                      .format(body,
                              e))
        # end of processing message

        try:
            org_message.ack()
        except Exception as e:
            log.error(("Failed ack-ing msg={} "
                       "ex={}")
                      .format(body,
                              e))
        # end of acknowleding message was processed

        log.info("done handle")
    def build_flat_msg(self,
                       id=None,
                       msg=None):
        """build_flat_msg

        :param id: unique id for this message
        :param msg: message dictionary to flatten
        """

        flat_msg = {}

        if not id:
            log.error("Please pass in an id")
            return None
        if not msg:
            log.error("Please pass in a msg")
            return None

        for k in msg["data"]:
            if k == "ether":
                flat_msg.update(self.process_ether_frame(
                                    id=id,
                                    msg=msg["data"][k]))
            # end of ether
            elif k == "ip":
                flat_msg.update(self.process_ip_frame(
                                    id=id,
                                    msg=msg["data"][k]))
            # end of ip
            elif k == "ipv6":
                flat_msg.update(self.process_ipvsix_frame(
                                    id=id,
                                    msg=msg["data"][k]))
            # end of ipv6
            elif k == "tcp":
                flat_msg.update(self.process_tcp_frame(
                                    id=id,
                                    msg=msg["data"][k]))
            # end of tcp
            elif k == "udp":
                flat_msg.update(self.process_udp_frame(
                                    id=id,
                                    msg=msg["data"][k]))
            # end of udp
            elif k == "dns":
                flat_msg.update(self.process_dns_frame(
                                    id=id,
                                    msg=msg["data"][k]))
            # end of dns
            elif k == "icmp":
                flat_msg.update(self.process_icmp_frame(
                                    id=id,
                                    msg=msg["data"][k]))
            # end of icmp
            elif k == "arp":
                flat_msg.update(self.process_arp_frame(
                                    id=id,
                                    msg=msg["data"][k]))
            # end of arp
            elif k == "raw":
                flat_msg.update(self.process_raw_frame(
                                    id=id,
                                    msg=msg["data"][k]))
            # end of raw
            elif k == "padding":
                flat_msg.update(self.process_pad_frame(
                                    id=id,
                                    msg=msg["data"][k]))
            # end of pad
            else:
                log.error(("Unsupported frame type={} "
                           "please file an issue to track this "
                           "with data={} msg={}")
                          .format(k,
                                  ppj(msg["data"][k]),
                                  msg["data"]))
        # end of processing new message

        return flat_msg
def convert_pkt_to_json(pkg):
    """ convert_pkt_to_json
    Inspired by:
    https://gist.githubusercontent.com/cr0hn/1b0c2e672cd0721d3a07/raw/9144676ceb12dbd545e6dce366822bbedde8de2c/pkg_to_json.py
    This function convert a Scapy packet to JSON

    :param pkg: A kamene package
    :type pkg: objects

    :return: A JSON data
    :rtype: dict()

    """
    results = defaultdict(dict)

    try:
        for index in range(0, len(pkg)):

            layer = pkg[index]

            # Get layer name
            layer_tmp_name = str(layer.__dict__["aliastypes"][0])
            layer_start_pos = layer_tmp_name.rfind(".") + 1
            layer_name = layer_tmp_name[layer_start_pos:-2].lower()

            # Get the layer info
            tmp_t = {}
            for default_x, y in layer.__dict__["default_fields"].items():

                x = "default_{}".format(default_x)

                if DEBUG_PACKETS:
                    log.info("default: key={} val={}".format(x, y))

                try:
                    tmp_t["hex_default_{}".format(default_x)] = y.hex()
                except Exception:

                    # http://python3porting.com/differences.html#long
                    if y and not isinstance(
                            y, (str, int, int, float, list, dict)):
                        if x in tmp_t:
                            tmp_t[x].update(convert_pkt_to_json(y))
                        else:
                            tmp_t[x] = y
                    else:
                        tmp_t[x] = y
            # end of fields

            results[layer_name] = tmp_t

            try:
                tmp_t = {}
                for fields_x, y in layer.__dict__["fields"].items():

                    if DEBUG_PACKETS:
                        log.info("fields: key={} val={}".format(x, y))

                    if fields_x == "qd":
                        if y:
                            tmp_t["fields_qd"] = json.loads(
                                convert_pkt_to_json(y))
                    elif fields_x == "ar":
                        if y:
                            tmp_t["fields_ar"] = json.loads(
                                convert_pkt_to_json(y))
                    elif fields_x == "an":
                        if y:
                            tmp_t["fields_an"] = json.loads(
                                convert_pkt_to_json(y))
                    elif fields_x == "arcount":
                        if y:
                            tmp_t["fields_arcount"] = json.loads(
                                convert_pkt_to_json(y))
                    elif fields_x == "ns":
                        if y:
                            """
                            'ns': <DNSRR  rrname='ubuntu.com.'
                            type=SOA rclass=IN ttl=1345
                            rdata=b'\x03ns1\tcanonical
                            \xc0\x19\nhostmaster\xc02xHl\x8e
                            \x00\x00*0\x00\x00\x0e\x10\x00
                            \t:\x80\x00\x00\x0e\x10' |>,
                            """
                            tmp_t["fields_ns"] = str(y)
                    elif fields_x == "proto":
                        if y:
                            tmp_t[x] = y
                    elif fields_x == "flags":
                        if y:
                            tmp_t[x] = y
                    elif fields_x == "ack":
                        if y:
                            tmp_t[x] = y
                    elif fields_x == "id":
                        if y:
                            tmp_t[x] = y
                    elif fields_x == "window":
                        if y:
                            tmp_t[x] = y
                    elif fields_x == "dataofs":
                        if y:
                            tmp_t[x] = y
                    elif fields_x == "frag":
                        if y:
                            tmp_t[x] = y
                    elif fields_x == "reserved":
                        if y:
                            tmp_t[x] = y
                    elif fields_x == "ttl":
                        if y:
                            tmp_t[x] = y
                    elif fields_x == "chksum":
                        if y:
                            tmp_t[x] = y
                    elif fields_x == "options":
                        if y:
                            cur_d = {}
                            try:
                                test = dict(y)
                                if "EOL" in test:
                                    cur_d["EOL"] = test["EOL"]
                                if "NOP" in test:
                                    cur_d["NOP"] = test["NOP"]
                                if "MSS" in test:
                                    cur_d["MSS"] = test["MSS"]
                                if "WScale" in test:
                                    cur_d["WScale"] = test["WScale"]
                                if "SAckOK" in test:
                                    cur_d["SAckOK"] = \
                                            test["SAckOK"].decode("utf-8")
                                if "SAck" in test:
                                    cur_d["SAck"] = test["SAck"]
                                if "Timestamp" in test:
                                    if test["Timestamp"]:
                                        cur_d["Timestamp"] = \
                                            test["Timestamp"][0]
                                if "AltChkSum" in test:
                                    cur_d["AltChkSum"] = test["AltChkSum"]
                                if "AltChkSumOpt" in test:
                                    cur_d["AltChkSumOpt"] = \
                                            test["AltChkSumOpt"]
                                if "Mood" in test:
                                    cur_d["Mood"] = test["Mood"]
                                if "Experiment" in test:
                                    cur_d["Experiment"] = test["Experiment"]
                            except Exception as exct:
                                log.error(("1 Failed parsing "
                                           "{}={} ex={}").format(x, y, exct))
                                cur_d = str(y)
                            # end of parsing cur_d
                            tmp_t["fields_{}".format(fields_x)] = cur_d
                    elif fields_x == "urgptr":
                        if y:
                            cur_d = {}
                            try:
                                for f in y:
                                    cur_f = "{}_{}".format(fields_x, f)
                                    try:
                                        cur_d[cur_f] = y.decode("utf-8")
                                    except Exception:
                                        cur_d["hex_" + cur_f] = y[f].hex()
                            except Exception as exct:
                                log.error(("2 Failed parsing "
                                           "{}={} ex={}").format(x, y, exct))
                                cur_d = y
                            # end of parsing cur_d
                            tmp_t["fields_{}".format(fields_x)] = cur_d
                    else:
                        x = "{}".format(fields_x)

                        try:
                            hex_key = "hex_field_{}".format(fields_x)
                            if fields_x == "load":
                                try:
                                    tmp_t["load"] = y.decode("utf-8")
                                except Exception:
                                    tmp_t[hex_key] = y.hex()
                            else:
                                tmp_t[hex_key] = y.hex()
                        except Exception:
                            # http://python3porting.com/differences.html#long
                            if y and not isinstance(
                                    y, (str, int, int, float, list, dict)):
                                if x in tmp_t:
                                    tmp_t[x].update(convert_pkt_to_json(y))
                                else:
                                    tmp_t[x] = y
                            else:
                                tmp_t[x] = y
                    # end of special handling:
                    # qd
                results[layer_name] = tmp_t

            except KeyError:
                # No custom fields
                pass

    except Exception:
        # Package finish -> do nothing
        pass

    if "padding" in results:
        try:
            if "load" in results["padding"]:
                results["padding"]["load"] = \
                    results["padding"]["load"].encode("utf-8").hex()
        except Exception:
            log.error(("failed parsing padding={}").format(results["padding"]))
    # end of fixing padding

    if "raw" in results:
        try:
            if "load" in results["raw"]:
                results["raw"]["load"] = \
                    results["raw"]["load"].encode("utf-8").hex()
        except Exception:
            log.error(("failed parsing raw={}").format(results["raw"]))
    # end of fixing raw

    if DEBUG_PACKETS:
        log.debug("")
        log.debug("pre json serialization:")
        log.debug(results)
        log.debug("post json.dumps:")
        log.debug(ppj(results))
        log.debug("")
    else:
        log.info(ppj(results))

    return results
def handle_processing_packets():
    """handle_processing_packets

    Replacement packet processing engine. This is not done.

    """

    host = os.getenv("LISTEN_ON_HOST", "127.0.0.1").strip().lstrip()
    port = int(os.getenv("LISTEN_ON_PORT", "80").strip().lstrip())
    backlog = int(os.getenv("LISTEN_BACKLOG", "5").strip().lstrip())
    size = int(os.getenv("LISTEN_SIZE", "102400").strip().lstrip())
    sleep_in_seconds = float(os.getenv("LISTEN_SLEEP", "0.5").strip().lstrip())
    needs_response = bool(
        os.getenv("LISTEN_SEND_RESPONSE", "0").strip().lstrip() == "1")
    shutdown_hook = os.getenv(
        "LISTEN_SHUTDOWN_HOOK",
        "/tmp/shutdown-listen-server-{}-{}".format(host,
                                                   port)).strip().lstrip()
    filter_key = os.getenv("IGNORE_KEY", INCLUDED_IGNORE_KEY).strip().lstrip()

    if os.path.exists(shutdown_hook):
        log.info(("Please remove the shutdown hook file: "
                  "\nrm -f {}").format(shutdown_hook))
        sys.exit(1)

    default_filter_key = filter_key
    bytes_for_filter_key = len(default_filter_key)
    offset_to_filter_key = (-1 * bytes_for_filter_key)
    offset_to_msg = offset_to_filter_key - 1

    now = datetime.datetime.now().isoformat()
    log.info(("{} - Starting Server address={}:{} "
              "backlog={} size={} sleep={} shutdown={} "
              "filter_key={}").format(now, host, port, backlog, size,
                                      sleep_in_seconds, shutdown_hook,
                                      default_filter_key))

    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    s.bind((host, port))
    s.listen(backlog)
    client, address = s.accept()

    midx = 0
    while 1:
        data = None
        address = None
        ignore_key = None

        try:
            if not client:
                client, address = s.accept()
        except Exception as e:
            log.error(("socket accept with ex={}").format(e))
        try:
            if client:
                data = client.recv(size)
        except Exception as e:
            log.error(("recv - disconnected with ex={}").format(e))
        if data:
            now = datetime.datetime.now().isoformat()
            packet_to_process = data[0:offset_to_msg]
            ignore_key = data[offset_to_filter_key:]
            log.info(
                ("decoding data={} key={}").format(packet_to_process,
                                                   ignore_key))

            msg = None
            try:
                msg = json.loads(packet_to_process.decode("utf-8"))
            except Exception as e:
                msg = None
                log.error(("Invalid data={} with ex={}").format(
                    packet_to_process, e))

            if msg:

                log.info(("received msg={} "
                          "data={} replying - ignore='{}'").format(
                              ppj(msg), packet_to_process, ignore_key))

                if msg["status"] == VALID:
                    if msg["data_type"] == TCP:
                        log.info("TCP")
                    elif msg["data_type"] == UDP:
                        log.info("TCP")
                    elif msg["data_type"] == ARP:
                        log.info("TCP")
                    elif msg["data_type"] == ICMP:
                        log.info("TCP")
                    else:
                        log.error(
                            ("unsuppported type={}").format(msg["data_type"]))
                    # end of supported eth protocol message types
                else:
                    log.error(
                        ("unsuppported msg status={}").format(msg["status"]))
                # end if msg was VALID
            # end of if found msg

            midx += 1
            if midx > 1000000:
                midx = 0
        else:
            log.debug("ignoring invalid data")
        # end of if valid msg or not

        if needs_response:
            client.send(ignore_key)
        else:
            log.info("no response")
            time.sleep(sleep_in_seconds)

        if os.path.exists(shutdown_hook):
            now = datetime.datetime.now().isoformat()
            log.info(("{} detected shutdown "
                      "file={}").format(now, shutdown_hook))
    # end of loop

    log.info("shutting down")
    client.close()

    log.info("done")