Esempio n. 1
0
GPUS = 4


phi = network_wrappers.FunctionFromVectorField(
    networks.tallUNet(unet=networks.UNet2ChunkyMiddle, dimension=3)
)
psi = network_wrappers.FunctionFromVectorField(networks.tallUNet2(dimension=3))

pretrained_lowres_net = inverseConsistentNet.InverseConsistentNet(
    network_wrappers.DoubleNet(phi, psi),
    lambda x, y: torch.mean((x - y) ** 2),
    100,
)

network_wrappers.assignIdentityMap(pretrained_lowres_net, input_shape)


network_wrappers.adjust_batch_size(pretrained_lowres_net, 12)
trained_weights = torch.load(
    "results/dd_l400_continue_rescalegrad2/knee_aligner_resi_net1800"
)

# trained_weights = torch.load("../results/dd_knee_l400_continue_smallbatch2/knee_aligner_resi_net9300")
# rained_weights = torch.load("../results/double_deformable_knee3/knee_aligner_resi_net22200")
pretrained_lowres_net.load_state_dict(trained_weights)

hires_net = inverseConsistentNet.InverseConsistentNet(
    network_wrappers.DoubleNet(
        network_wrappers.DownsampleNet(pretrained_lowres_net.regis_net, dimension=3),
        network_wrappers.FunctionFromVectorField(networks.tallUNet2(dimension=3)),
Esempio n. 2
0
torch.manual_seed(1)
torch.cuda.manual_seed(1)
np.random.seed(1)
print("=" * 50)
net = inverseConsistentNet.InverseConsistentNet(
    network_wrappers.DoubleNet(
        network_wrappers.RandomShift(0.25),
        network_wrappers.FunctionFromVectorField(
            networks.tallUNet2(dimension=2)),
    ),
    lambda x, y: torch.mean((x - y)**2),
    lmbda,
)

input_shape = next(iter(d1))[0].size()
network_wrappers.assignIdentityMap(net, input_shape)
net.cuda()
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
net.train()

xs = []
for _ in range(40):
    y = np.array(train.train2d(net, optimizer, d1, d2, epochs=50))
    xs.append(y)
    x = np.concatenate(xs)
    plt.title("Loss curve for " + type(net.regis_net).__name__ + " lambda=" +
              str(lmbda))
    plt.plot(x[:, :3])
    plt.savefig(describe.run_dir + f"loss.png")
    plt.clf()
    plt.title("Log # pixels with negative Jacobian per epoch")
Esempio n. 3
0
                                    data_size=data_size,
                                    hollow=True,
                                    batch_size=batch_size)
d1_t, d2_t = data.get_dataset_triangles("test",
                                        data_size=data_size,
                                        hollow=True,
                                        batch_size=batch_size)

image_A, image_B = (x[0].cuda() for x in next(zip(d1, d2)))

net = inverseConsistentNet.InverseConsistentNet(
    network_wrappers.FunctionFromMatrix(networks.ConvolutionalMatrixNet()),
    lambda x, y: torch.mean((x - y)**2),
    100,
)
network_wrappers.assignIdentityMap(net, image_A.shape)
net.cuda()

import train

optim = torch.optim.Adam(net.parameters(), lr=0.00001)
net.train().cuda()

xs = []
for _ in range(240):
    y = np.array(train.train2d(net, optim, d1, d2, epochs=50))
    xs.append(y)
    x = np.concatenate(xs)
    plt.title("Loss curve for " + type(net.regis_net).__name__)
    plt.plot(x[:, :3])
    plt.savefig(describe.run_dir + f"loss.png")