def create_generator(self, parameters=None, encoded_parameters=None): net = GeneratorNet( self.loss_function, nn.Sequential( nn.ConvTranspose2d(100, self.complexity * 8, 4, 1, 0), nn.BatchNorm2d(self.complexity * 8), nn.ReLU(True), nn.ConvTranspose2d(self.complexity * 8, self.complexity * 4, 4, 2, 1), nn.BatchNorm2d(self.complexity * 4), nn.ReLU(True), nn.ConvTranspose2d(self.complexity * 4, self.complexity * 2, 4, 2, 1), nn.BatchNorm2d(self.complexity * 2), nn.ReLU(True), nn.ConvTranspose2d(self.complexity * 2, self.complexity, 4, 2, 1), nn.BatchNorm2d(self.complexity), nn.ReLU(True), nn.ConvTranspose2d(self.complexity, 3, 4, 2, 1), nn.Tanh()), self.gen_input_size) if parameters is not None: net.parameters = parameters elif encoded_parameters is not None: net.encoded_parameters = encoded_parameters else: net.net.apply(self._init_weights) return net
def create_generator(self, parameters=None, encoded_parameters=None): net = GeneratorNet( self.loss_function, Sequential(nn.Linear(self.gen_input_size, 128), nn.Tanh(), nn.Linear(128, 128), nn.Tanh(), nn.Linear(128, self.input_data_size)), self.gen_input_size) if parameters is not None: net.parameters = parameters if encoded_parameters is not None: net.encoded_parameters = encoded_parameters return net
def create_generator(self, parameters=None, encoded_parameters=None): net = GeneratorNet( self.loss_function, Sequential(nn.Linear(64, 256), nn.LeakyReLU(0.2), nn.Linear(256, 256), nn.LeakyReLU(0.2), nn.Linear(256, self.input_data_size), nn.Tanh()), self.gen_input_size) if parameters is not None: net.parameters = parameters if encoded_parameters is not None: net.encoded_parameters = encoded_parameters return net
def create_generator(self, parameters=None, encoded_parameters=None): net = GeneratorNet( self.loss_function, nn.Sequential( nn.ConvTranspose3d(self.z_size, self.cube_len * 8, kernel_size=4, stride=2, bias=self.bias, padding=self.pad), nn.BatchNorm3d(self.cube_len * 8), nn.ReLU(), nn.ConvTranspose3d(self.cube_len * 8, self.cube_len * 4, kernel_size=4, stride=2, bias=self.bias, padding=(1, 1, 1)), nn.BatchNorm3d(self.cube_len * 4), nn.ReLU(), nn.ConvTranspose3d(self.cube_len * 4, self.cube_len * 2, kernel_size=4, stride=2, bias=self.bias, padding=(1, 1, 1)), nn.BatchNorm3d(self.cube_len * 2), nn.ReLU(), nn.ConvTranspose3d(self.cube_len * 2, self.cube_len, kernel_size=4, stride=2, bias=self.bias, padding=(1, 1, 1)), nn.BatchNorm3d(self.cube_len), nn.ReLU(), nn.ConvTranspose3d(self.cube_len, 1, kernel_size=4, stride=2, bias=self.bias, padding=(1, 1, 1)), nn.Sigmoid()), self.gen_input_size) if not (parameters == None): net.parameters = parameters elif not (encoded_parameters == None): net.encoded_parameters = encoded_parameters else: net.net.apply(self._init_weights) return net