class Agent(): def __init__(self, alpha, beta, input_dims, tau, n_actions, gamma=0.99, max_size=50000, fc1_dims=400, fc2_dims=300, batch_size=32): self.gamma = gamma self.tau = tau self.batch_size = batch_size self.alpha = alpha self.beta = beta self.memory = ReplayBuffer(max_size, input_dims, n_actions) self.noise = OUActionNoise(mu=np.zeros(n_actions)) self.actor = ActorNetwork(alpha, input_dims, fc1_dims, fc2_dims, n_actions=n_actions, name='actor') self.critic = CriticNetwork(beta, input_dims, fc1_dims, fc2_dims, n_actions=n_actions, name='critic') self.target_actor = ActorNetwork(alpha, input_dims, fc1_dims, fc2_dims, n_actions=n_actions, name='target_actor') self.target_critic = CriticNetwork(beta, input_dims, fc1_dims, fc2_dims, n_actions=n_actions, name='target_critic') self.update_network_parameters( tau=1) # for the first time target_actor and actor are same def choose_action(self, observation): self.actor.eval( ) # we are setting our actor network to eval mode because we have batch normalization layer # and we dont want to calculate statistics for that layer at this step state = T.tensor([observation], dtype=T.float).to(self.actor.device) mu = self.actor.forward(state).to(self.actor.device) mu_prime = mu + T.tensor(self.noise(), dtype=T.float).to( self.actor.device) self.actor.train() return mu_prime.cpu().detach().numpy()[0] def remember(self, state, action, reward, state_, done): self.memory.store_transition(state, action, reward, state_, done) def save_models(self): self.actor.save_checkpoint() self.target_actor.save_checkpoint() self.critic.save_checkpoint() self.target_critic.save_checkpoint() def load_models(self): self.actor.load_checkpoint() self.target_actor.load_checkpoint() self.critic.load_checkpoint() self.target_critic.load_checkpoint() def learn(self): if self.memory.mem_cntr < self.batch_size: return states, actions, rewards, states_, done = self.memory.sample_buffer( self.batch_size) states = T.tensor(states, dtype=T.float).to(self.actor.device) states_ = T.tensor(states_, dtype=T.float).to(self.actor.device) actions = T.tensor(actions, dtype=T.float).to(self.actor.device) rewards = T.tensor(rewards, dtype=T.float).to(self.actor.device) done = T.tensor(done).to(self.actor.device) target_actions = self.target_actor.forward(states_) critic_value_ = self.target_critic.forward(states_, target_actions) critic_value = self.critic.forward(states, actions) critic_value_[done] = 0.0 critic_value_ = critic_value_.view(-1) target = rewards + self.gamma * critic_value_ target = target.view(self.batch_size, 1) self.critic.optimizer.zero_grad() critic_loss = F.mse_loss(target, critic_value) critic_loss.backward() self.critic.optimizer.step() self.actor.optimizer.zero_grad() actor_loss = -self.critic.forward(states, self.actor.forward(states)) actor_loss = T.mean(actor_loss) actor_loss.backward() self.actor.optimizer.step() self.update_network_parameters( ) # sending tau None so that local tau variable there takes the value of class tau variable def update_network_parameters(self, tau=None): if tau is None: tau = self.tau actor_params = self.actor.named_parameters() critic_params = self.critic.named_parameters() target_actor_params = self.target_actor.named_parameters() target_critic_params = self.target_critic.named_parameters() critic_state_dict = dict(critic_params) actor_state_dict = dict(actor_params) target_critic_state_dict = dict(target_critic_params) target_actor_state_dict = dict(target_actor_params) for name in critic_state_dict: critic_state_dict[name] = tau * critic_state_dict[name].clone() + ( 1 - tau) * target_critic_state_dict[name].clone() for name in actor_state_dict: actor_state_dict[name] = tau * actor_state_dict[name].clone() + ( 1 - tau) * target_actor_state_dict[name].clone() self.target_critic.load_state_dict(critic_state_dict) self.target_actor.load_state_dict(actor_state_dict)
q_env = [] q_network = [] #print(states) observation = env.reset(init_x=np.array([100]), max_steps=2000) for x in states: q_env.append([]) q_network.append([]) for u in actions: # states.append(x) # actions.append(u) q_env[-1].append(np.squeeze(env.get_Q(x, u))) #q_env.append(np.squeeze(env.get_Q(x, u))) q1_new_policy = np.squeeze( critic_1.forward(T.tensor(x), T.tensor(u)).detach().numpy()) q2_new_policy = np.squeeze( critic_2.forward(T.tensor(x), T.tensor(u)).detach().numpy()) #print(q1_new_policy) q = np.minimum(q1_new_policy, q2_new_policy) #q_network.append(q) q_network[-1].append(q) q_env = q_env / np.max(np.abs(q_env)) q_network = q_network / np.max(np.abs(q_network)) states = np.squeeze(states) actions = np.squeeze(actions) q_env = np.squeeze(q_env) q_network = np.squeeze(q_network)
class Agent(): def __init__(self, alpha=0.0003, beta=0.0003, input_dims=[8], env=None, gamma=0.99, n_actions=2, max_size=1000000, tau=0.005, layer1_size=256, layer2_size=256, batch_size=256, reward_scale=2): self.gamma = gamma self.tau = tau self.memory = ReplayBuffer(max_size, input_dims, n_actions) self.batch_size = batch_size self.n_actions = n_actions self.actor = ActorNetwork(alpha, input_dims, n_actions=n_actions, name='actor', max_action=env.action_space.high) self.critic_1 = CriticNetwork(beta, input_dims, n_actions=n_actions, name='critic_1') self.critic_2 = CriticNetwork(beta, input_dims, n_actions=n_actions, name='critic_2') self.value = ValueNetwork(beta, input_dims, name='value') self.target_value = ValueNetwork(beta, input_dims, name='target_value') self.scale = reward_scale self.update_network_parameters(tau=1) def choose_action(self, observation): state = T.Tensor([observation]).to(self.actor.device) actions, _ = self.actor.sample_normal(state, reparameterize=False) return actions.cpu().detach().numpy()[0] def remember(self, state, action, reward, new_state, done): self.memory.store_transition(state, action, reward, new_state, done) def update_network_parameters(self, tau=None): if tau is None: tau = self.tau target_value_params = self.target_value.named_parameters() value_params = self.value.named_parameters() target_value_state_dict = dict(target_value_params) value_state_dict = dict(value_params) for name in value_state_dict: value_state_dict[name] = tau*value_state_dict[name].clone() + \ (1-tau)*target_value_state_dict[name].clone() self.target_value.load_state_dict(value_state_dict) def save_models(self): print('.... saving models ....') self.actor.save_checkpoint() self.value.save_checkpoint() self.target_value.save_checkpoint() self.critic_1.save_checkpoint() self.critic_2.save_checkpoint() def load_models(self): print('.... loading models ....') self.actor.load_checkpoint() self.value.load_checkpoint() self.target_value.load_checkpoint() self.critic_1.load_checkpoint() self.critic_2.load_checkpoint() def learn(self): if self.memory.mem_cntr < self.batch_size: return state, action, reward, new_state, done = \ self.memory.sample_buffer(self.batch_size) reward = T.tensor(reward, dtype=T.float).to(self.actor.device) done = T.tensor(done).to(self.actor.device) state_ = T.tensor(new_state, dtype=T.float).to(self.actor.device) state = T.tensor(state, dtype=T.float).to(self.actor.device) action = T.tensor(action, dtype=T.float).to(self.actor.device) value = self.value(state).view(-1) value_ = self.target_value(state_).view(-1) value_[done] = 0.0 actions, log_probs = self.actor.sample_normal(state, reparameterize=False) log_probs = log_probs.view(-1) q1_new_policy = self.critic_1.forward(state, actions) q2_new_policy = self.critic_2.forward(state, actions) critic_value = T.min(q1_new_policy, q2_new_policy) critic_value = critic_value.view(-1) self.value.optimizer.zero_grad() value_target = critic_value - log_probs value_loss = 0.5 * F.mse_loss(value, value_target) value_loss.backward(retain_graph=True) self.value.optimizer.step() actions, log_probs = self.actor.sample_normal(state, reparameterize=True) log_probs = log_probs.view(-1) q1_new_policy = self.critic_1.forward(state, actions) q2_new_policy = self.critic_2.forward(state, actions) critic_value = T.min(q1_new_policy, q2_new_policy) critic_value = critic_value.view(-1) actor_loss = log_probs - critic_value actor_loss = T.mean(actor_loss) self.actor.optimizer.zero_grad() actor_loss.backward(retain_graph=True) self.actor.optimizer.step() self.critic_1.optimizer.zero_grad() self.critic_2.optimizer.zero_grad() q_hat = self.scale * reward + self.gamma * value_ q1_old_policy = self.critic_1.forward(state, action).view(-1) q2_old_policy = self.critic_2.forward(state, action).view(-1) critic_1_loss = 0.5 * F.mse_loss(q1_old_policy, q_hat) critic_2_loss = 0.5 * F.mse_loss(q2_old_policy, q_hat) critic_loss = critic_1_loss + critic_2_loss critic_loss.backward() self.critic_1.optimizer.step() self.critic_2.optimizer.step() self.update_network_parameters()
class Agent(object): def __init__(self, alpha, beta, input_dims, action_bound, tau, env, gamma=0.99, n_actions=2, max_size=1000000, layer1_size=400, layer2_size=300, batch_size=64): self.gamma = gamma self.tau = tau self.memory = ReplayBuffer(max_size, input_dims, n_actions) self.batch_size = batch_size self.action_bound = action_bound self.actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='Actor') self.critic = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='Critic') self.target_actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='TargetActor') self.target_critic = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='TargetCritic') self.noise = OUActionNoise(mu=np.zeros(n_actions)) self.update_network_parameters(tau=1) def choose_action(self, observation): self.actor.eval() observation = T.tensor(observation, dtype=T.float).to(self.actor.device) mu = self.actor.forward(observation).to(self.actor.device) mu_prime = mu + T.tensor(self.noise(), dtype=T.float).to( self.actor.device) self.actor.train() return (mu_prime * T.tensor(self.action_bound)).cpu().detach().numpy() def remember(self, state, action, reward, new_state, done): self.memory.store_transition(state, action, reward, new_state, done) def learn(self): if self.memory.mem_cntr < self.batch_size: return state, action, reward, new_state, done = \ self.memory.sample_buffer(self.batch_size) reward = T.tensor(reward, dtype=T.float).to(self.critic.device) done = T.tensor(done).to(self.critic.device) new_state = T.tensor(new_state, dtype=T.float).to(self.critic.device) action = T.tensor(action, dtype=T.float).to(self.critic.device) state = T.tensor(state, dtype=T.float).to(self.critic.device) self.target_actor.eval() self.target_critic.eval() self.critic.eval() target_actions = self.target_actor.forward(new_state) critic_value_ = self.target_critic.forward(new_state, target_actions) critic_value = self.critic.forward(state, action) target = [] for j in range(self.batch_size): target.append(reward[j] + self.gamma * critic_value_[j] * done[j]) target = T.tensor(target).to(self.critic.device) target = target.view(self.batch_size, 1) self.critic.train() self.critic.optimizer.zero_grad() critic_loss = F.mse_loss(target, critic_value) critic_loss.backward() self.critic.optimizer.step() self.critic.eval() self.actor.optimizer.zero_grad() mu = self.actor.forward(state) self.actor.train() actor_loss = -self.critic.forward(state, mu) actor_loss = T.mean(actor_loss) actor_loss.backward() self.actor.optimizer.step() self.update_network_parameters() def update_network_parameters(self, tau=None): if tau is None: tau = self.tau actor_params = self.actor.named_parameters() critic_params = self.critic.named_parameters() target_actor_params = self.target_actor.named_parameters() target_critic_params = self.target_critic.named_parameters() critic_state_dict = dict(critic_params) actor_state_dict = dict(actor_params) target_critic_dict = dict(target_critic_params) target_actor_dict = dict(target_actor_params) for name in critic_state_dict: critic_state_dict[name] = tau*critic_state_dict[name].clone() + \ (1-tau)*target_critic_dict[name].clone() self.target_critic.load_state_dict(critic_state_dict) for name in actor_state_dict: actor_state_dict[name] = tau*actor_state_dict[name].clone() + \ (1-tau)*target_actor_dict[name].clone() self.target_actor.load_state_dict(actor_state_dict) """ #Verify that the copy assignment worked correctly target_actor_params = self.target_actor.named_parameters() target_critic_params = self.target_critic.named_parameters() critic_state_dict = dict(target_critic_params) actor_state_dict = dict(target_actor_params) print('\nActor Networks', tau) for name, param in self.actor.named_parameters(): print(name, T.equal(param, actor_state_dict[name])) print('\nCritic Networks', tau) for name, param in self.critic.named_parameters(): print(name, T.equal(param, critic_state_dict[name])) input() """ def save_models(self): self.actor.save_checkpoint() self.target_actor.save_checkpoint() self.critic.save_checkpoint() self.target_critic.save_checkpoint() def load_models(self): self.actor.load_checkpoint() self.target_actor.load_checkpoint() self.critic.load_checkpoint() self.target_critic.load_checkpoint() def check_actor_params(self): current_actor_params = self.actor.named_parameters() current_actor_dict = dict(current_actor_params) original_actor_dict = dict(self.original_actor.named_parameters()) original_critic_dict = dict(self.original_critic.named_parameters()) current_critic_params = self.critic.named_parameters() current_critic_dict = dict(current_critic_params) print('Checking Actor parameters') for param in current_actor_dict: print( param, T.equal(original_actor_dict[param], current_actor_dict[param])) print('Checking critic parameters') for param in current_critic_dict: print( param, T.equal(original_critic_dict[param], current_critic_dict[param])) input()
class Agent(): def __init__(self, alpha, beta, input_dims, tau, env, action_bound, gamma=0.99, update_actor_interval=2, warmup=1000, n_actions=2, max_size=1000000, layer1_size=400, layer2_size=300, batch_size=100, noise=0.1): self.gamma = gamma self.tau = tau self.max_action = env.action_space.high self.min_action = env.action_space.low self.memory = ReplayBuffer(max_size, input_dims, n_actions) self.batch_size = batch_size self.learn_step_cntr = 0 self.time_step = 0 self.warmup = warmup self.n_actions = n_actions self.update_actor_iter = update_actor_interval self.action_bound = action_bound self.actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='actor') self.critic_1 = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='critic_1') self.critic_2 = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='critic_2') self.target_actor = ActorNetwork(alpha, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='target_actor') self.target_critic_1 = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='target_critic_1') self.target_critic_2 = CriticNetwork(beta, input_dims, layer1_size, layer2_size, n_actions=n_actions, name='target_critic_2') self.noise = noise self.update_network_parameters(tau=1) def choose_action(self, observation): if self.time_step < self.warmup: mu = T.tensor( np.random.normal(scale=self.noise, size=(self.n_actions, ))) else: state = T.tensor(observation, dtype=T.float).to(self.actor.device) mu = self.actor.forward(state).to(self.actor.device) mu_prime = mu + T.tensor(np.random.normal(scale=self.noise), dtype=T.float).to(self.actor.device) mu_prime = T.clamp(mu_prime, self.min_action[0], self.max_action[0]) self.time_step += 1 return (mu_prime * T.tensor(self.action_bound)).cpu().detach().numpy() def remember(self, state, action, reward, new_state, done): self.memory.store_transition(state, action, reward, new_state, done) def learn(self): if self.memory.mem_cntr < self.batch_size: return state, action, reward, new_state, done = \ self.memory.sample_buffer(self.batch_size) reward = T.tensor(reward, dtype=T.float).to(self.critic_1.device) done = T.tensor(done).to(self.critic_1.device) state_ = T.tensor(new_state, dtype=T.float).to(self.critic_1.device) state = T.tensor(state, dtype=T.float).to(self.critic_1.device) action = T.tensor(action, dtype=T.float).to(self.critic_1.device) target_actions = self.target_actor.forward(state_) target_actions = target_actions + \ T.clamp(T.tensor(np.random.normal(scale=0.2)), -0.5, 0.5) target_actions = T.clamp(target_actions, self.min_action[0], self.max_action[0]) q1_ = self.target_critic_1.forward(state_, target_actions) q2_ = self.target_critic_2.forward(state_, target_actions) q1 = self.critic_1.forward(state, action) q2 = self.critic_2.forward(state, action) q1_[done] = 0.0 q2_[done] = 0.0 q1_ = q1_.view(-1) q2_ = q2_.view(-1) critic_value_ = T.min(q1_, q2_) target = reward + self.gamma * critic_value_ target = target.view(self.batch_size, 1) self.critic_1.optimizer.zero_grad() self.critic_2.optimizer.zero_grad() q1_loss = F.mse_loss(target, q1) q2_loss = F.mse_loss(target, q2) critic_loss = q1_loss + q2_loss critic_loss.backward() self.critic_1.optimizer.step() self.critic_2.optimizer.step() self.learn_step_cntr += 1 if self.learn_step_cntr % self.update_actor_iter != 0: return self.actor.optimizer.zero_grad() actor_q1_loss = self.critic_1.forward(state, self.actor.forward(state)) actor_loss = -T.mean(actor_q1_loss) actor_loss.backward() self.actor.optimizer.step() self.update_network_parameters() def update_network_parameters(self, tau=None): if tau is None: tau = self.tau actor_params = self.actor.named_parameters() critic_1_params = self.critic_1.named_parameters() critic_2_params = self.critic_2.named_parameters() target_actor_params = self.target_actor.named_parameters() target_critic_1_params = self.target_critic_1.named_parameters() target_critic_2_params = self.target_critic_2.named_parameters() critic_1 = dict(critic_1_params) critic_2 = dict(critic_2_params) actor = dict(actor_params) target_actor = dict(target_actor_params) target_critic_1 = dict(target_critic_1_params) target_critic_2 = dict(target_critic_2_params) for name in critic_1: critic_1[name] = tau*critic_1[name].clone() + \ (1-tau)*target_critic_1[name].clone() for name in critic_2: critic_2[name] = tau*critic_2[name].clone() + \ (1-tau)*target_critic_2[name].clone() for name in actor: actor[name] = tau*actor[name].clone() + \ (1-tau)*target_actor[name].clone() self.target_critic_1.load_state_dict(critic_1) self.target_critic_2.load_state_dict(critic_2) self.target_actor.load_state_dict(actor) def save_models(self): self.actor.save_checkpoint() self.target_actor.save_checkpoint() self.critic_1.save_checkpoint() self.critic_2.save_checkpoint() self.target_critic_1.save_checkpoint() self.target_critic_2.save_checkpoint() def load_models(self): self.actor.load_checkpoint() self.target_actor.load_checkpoint() self.critic_1.load_checkpoint() self.critic_2.load_checkpoint() self.target_critic_1.load_checkpoint() self.target_critic_2.load_checkpoint()
class Agent: """ This class represents the reinforcement learning agent """ def __init__(self, state_size: int, action_size: int, gamma: float = 0.99, lr_actor: float = 0.001, lr_critic: float = 0.003, weight_decay: float = 0.0001, tau: float = 0.001, buffer_size: int = 100000, batch_size: int = 64): """ :param state_size: how many states does the agent get as input (input size of neural networks) :param action_size: from how many actions can the agent choose :param gamma: discount factor :param lr_actor: learning rate of the actor network :param lr_critic: learning rate of the critic network :param weight_decay: :param tau: soft update parameter :param buffer_size: size of replay buffer :param batch_size: size of learning batch (mini-batch) """ self.tau = tau self.gamma = gamma self.batch_size = batch_size self.actor_local = ActorNetwork(state_size, action_size).to(device) self.actor_target = ActorNetwork(state_size, action_size).to(device) self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=lr_actor) print(self.actor_local) self.critic_local = CriticNetwork(state_size, action_size).to(device) self.critic_target = CriticNetwork(state_size, action_size).to(device) self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=lr_critic, weight_decay=weight_decay) print(self.critic_local) self.hard_update(self.actor_local, self.actor_target) self.hard_update(self.critic_local, self.critic_target) self.memory = ReplayBuffer(action_size, buffer_size, batch_size) # this would probably also work with Gaussian noise instead of Ornstein-Uhlenbeck process self.noise = OUNoise(action_size) def step(self, experience: tuple): """ :param experience: tuple consisting of (state, action, reward, next_state, done) :return: """ self.memory.add(*experience) if len(self.memory) > self.batch_size: experiences = self.memory.sample() self.learn(experiences) def act(self, state, add_noise: bool = True): """ Actor uses the policy to act given a state """ state = torch.from_numpy(state).float().to(device) self.actor_local.eval() with torch.no_grad(): action = self.actor_local.forward(state).cpu().data.numpy() self.actor_local.train() if add_noise: action += self.noise.sample() return np.clip(action, -1, 1) def learn(self, experiences): # Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) # the actor_target returns the next action, this next action is then used (with the state) to estimate # the Q-value with the critic_target network states, actions, rewards, next_states, dones = experiences # region Update Critic actions_next = self.actor_target.forward(next_states) q_expected = self.critic_local.forward(states, actions) q_targets_next = self.critic_target.forward(next_states, actions_next) q_targets = rewards + (self.gamma * q_targets_next * (1 - dones)) # minimize the loss critic_loss = F.mse_loss(q_expected, q_targets) self.critic_optimizer.zero_grad() critic_loss.backward() torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1) self.critic_optimizer.step() # endregion Update Critic # region Update actor # Compute actor loss actions_predictions = self.actor_local.forward(states) actor_loss = -self.critic_local.forward(states, actions_predictions).mean() # Minimize actor loss self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # endregion Update actor # region update target network self.soft_update(self.critic_local, self.critic_target) self.soft_update(self.actor_local, self.actor_target) # endregion update target network def soft_update(self, local_model, target_model): for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(self.tau * local_param.data + (1.0 - self.tau) * target_param.data) def hard_update(self, local_model, target_model): """Copy the weights and biases from the local to the target network""" for target_param, param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(param.data) def reset(self): self.noise.reset()