Esempio n. 1
0
class tree(object):
    """ construction of prefix and suffix tree
    """
    def __init__(self, n_robot, acpt, ts, buchi_graph, init, seg, step_size,
                 no):
        """
        :param acpt:  accepting state
        :param ts: transition system
        :param buchi_graph:  Buchi graph
        :param init: product initial state
        """
        self.robot = n_robot
        self.acpt = acpt
        self.goals = []
        self.ts = ts
        self.buchi_graph = buchi_graph
        self.init = init
        self.seg = seg
        self.step_size = step_size
        self.dim = len(self.ts['workspace'])
        uni_ball = [
            1, 2, 3.142, 4.189, 4.935, 5.264, 5.168, 4.725, 4.059, 3.299, 2.550
        ]
        # uni_v = uni_ball[self.robot*self.dim]
        uni_v = np.power(np.pi, self.robot * self.dim /
                         2) / math.gamma(self.robot * self.dim / 2 + 1)
        self.gamma = np.ceil(
            4 * np.power(1 / uni_v, 1. /
                         (self.dim * self.robot)))  # unit workspace
        self.tree = DiGraph(type='PBA', init=init)
        self.group = dict()
        label = []
        for i in range(self.robot):
            l = self.label(init[0][i])
            # exists one sampled point lies within obstacles
            if l != '':
                l = l + '_' + str(i + 1)
            label.append(l)

        self.tree.add_node(init, cost=0, label=label)
        self.add_group(init)
        # probability
        self.p = 0.9
        # threshold for collision avoidance
        self.threshold = 0.02
        # polygon obstacle
        polys = [[
            vg.Point(0.4, 1.0),
            vg.Point(0.4, 0.7),
            vg.Point(0.6, 0.7),
            vg.Point(0.6, 1.0)
        ],
                 [
                     vg.Point(0.3, 0.2),
                     vg.Point(0.3, 0.0),
                     vg.Point(0.7, 0.0),
                     vg.Point(0.7, 0.2)
                 ]]
        self.g = vg.VisGraph()
        self.g.build(polys, status=False)
        # region that has ! preceding it
        self.no = no

    def add_group(self, q_state):
        """
        group nodes with same buchi state
        :param q_state: new state added to the tree
        """
        try:
            self.group[q_state[1]].append(q_state)
        except KeyError:
            self.group[q_state[1]] = [q_state]

    def min2final(self, min_qb_dict, b_final, cand):
        """
         collects the buchi state in the tree with minimum distance to the final state
        :param min_qb_dict: dict
        :param b_final: feasible final state
        :return: list of buchi states in the tree with minimum distance to the final state
        """
        l_min = np.inf
        b_min = []
        for b_state in cand:
            if min_qb_dict[(b_state, b_final)] < l_min:
                l_min = min_qb_dict[(b_state, b_final)]
                b_min = [b_state]
            elif min_qb_dict[(b_state, b_final)] == l_min:
                b_min.append(b_state)
        return b_min

    def all2one(self, b_min):
        """
        partition nodes into 2 groups
        :param b_min: buchi states with minimum distance to the finals state
        :return: 2 groups
        """
        q_min2final = []
        q_minNot2final = []
        for b_state in self.group.keys():
            if b_state in b_min:
                q_min2final = q_min2final + self.group[b_state]
            else:
                q_minNot2final = q_minNot2final + self.group[b_state]
        return q_min2final, q_minNot2final

    def get_truncated_normal(self, mean=0, sd=1, low=0, upp=10):
        return truncnorm((low - mean) / sd, (upp - mean) / sd,
                         loc=mean,
                         scale=sd)

    def trunc(self, value):
        if value < 0:
            return 0
        elif value > 1:
            return 1
        else:
            return value

    def collision_avoidance(self, x, index):
        """
        check whether any robots are collision-free from index-th robot
        :param x: all robots
        :param index: index-th robot
        :return: true collision free
        """
        for i in range(len(x)):
            if i != index and np.linalg.norm(np.subtract(
                    x[i], x[index])) <= self.threshold:
                return False
        return True

    def target(self, init, target, regions):
        """
        find the closest vertex in the short path from init to target
        :param init: inital point
        :param target: target labeled region
        :param regions: regions
        :return: closest vertex
        """
        tg = regions[((target, 'b'))][:2]
        shortest = self.g.shortest_path(vg.Point(init[0], init[1]),
                                        vg.Point(tg[0], tg[1]))
        return (shortest[1].x, shortest[1].y)

    def gaussian_guided(self, x, target):
        """
        calculate new point following gaussian dist guided by the target
        :param x: mean point
        :param target: target point
        :return: new point
        """
        # print(min(self.gamma * np.power(np.log(self.tree.number_of_nodes()+1)/self.tree.number_of_nodes(),1./(self.dim*self.robot)), self.step_size)/3)
        # d = self.get_truncated_normal(0, min(self.gamma * np.power(np.log(self.tree.number_of_nodes()+1)/self.tree.number_of_nodes(),1./(self.dim*self.robot)), self.step_size)/3, 0, np.inf)
        # d = self.get_truncated_normal(0, self.step_size/3, 0, np.inf)
        d = self.get_truncated_normal(0, 1 / 3, 0, np.inf)
        # d = self.get_truncated_normal(0, 1, 0, np.inf)
        d = d.rvs()
        # # print('d=',d)
        # if np.random.uniform(0,1,1) <= self.p:
        #     angle = np.random.uniform(-np.pi/2, np.pi/2, 1) + np.arctan2(center[1]-x[1], center[0]-x[0])
        # else:
        #     angle = np.random.uniform(np.pi/2, 3*np.pi/2, 1) + np.arctan2(center[1]-x[1], center[0]-x[0])
        angle = np.random.normal(0, np.pi / 12 / 3 / 3, 1) + np.arctan2(
            target[1] - x[1], target[0] - x[0])
        # angle = np.arctan2(target[1] - x[1], target[0] - x[0])
        x_rand = np.add(x, np.append(d * np.cos(angle), d * np.sin(angle)))
        x_rand = [self.trunc(x) for x in x_rand]
        return tuple(x_rand)

    def gaussian_unguided(self, x):
        """

        :param x:
        :return:
        """
        d = self.get_truncated_normal(
            0,
            min(
                self.gamma * np.power(
                    np.log(self.tree.number_of_nodes() + 1) /
                    self.tree.number_of_nodes(), 1. /
                    (self.dim * self.robot)), self.step_size) / 3, 0)
        d = d.rvs()
        angle = np.random.uniform(-np.pi, np.pi, 1)
        x_rand = np.add(x, np.append(d * np.cos(angle), d * np.sin(angle)))
        return tuple([self.trunc(x) for x in x_rand])

    def buchi_guided_sample_by_label(self, x_rand, b_label, x_label, regions):

        if b_label.strip().strip('(').strip(')') == '1':
            return []
        # not or be in some place
        else:
            # label of current position
            blabel = b_label.split('||')[0]
            # blabel = random.choice(b_label.split('||'))
            atomic_label = blabel.split('&&')
            for a in atomic_label:
                # a = a.strip().strip('(').strip(')')
                a = a.strip().strip('(').strip(')').split('or')[0].strip()
                # if in wrong position, sample randomly
                if '!' in a:
                    if a[1:] in x_label:
                        xi_rand = []
                        for i in range(self.dim):
                            xi_rand.append(uniform(0, self.ts['workspace'][i]))
                        ind = int(a[1:].split('_')[1]) - 1
                        x_rand[ind] = tuple(xi_rand)
                else:
                    # move towards target position
                    if not a in x_label:
                        ind = a.split('_')
                        weight = 0.8
                        if np.random.uniform(0, 1, 1) <= weight:
                            tg = self.target(x_rand[int(ind[1]) - 1], ind[0],
                                             regions)
                            x_rand[int(ind[1]) - 1] = self.gaussian_guided(
                                x_rand[int(ind[1]) - 1], tg)
                        else:
                            xi_rand = []
                            for i in range(self.dim):
                                xi_rand.append(
                                    uniform(0, self.ts['workspace'][i]))
                            x_rand[int(ind[1]) - 1] = tuple(xi_rand)

        return x_rand

    def buchi_guided_sample_by_truthvalue(self, truth, x_rand, q_rand, x_label,
                                          regions):
        """
        sample guided by truth value
        :param truth: the value making transition occur
        :param x_rand: random selected node
        :param x_label: label of x_rand
        :param regions: regions
        :return: new sampled point
        """
        if truth == '1':
            return [], []
        # not or be in some place
        else:
            for key in truth:
                # if in wrong position, sample randomly
                # if not truth[key] and key in x_label:
                #     xi_rand = []
                #     for i in range(self.dim):
                #         xi_rand.append(uniform(0, self.ts['workspace'][i]))
                #     ind = key.split('_')
                #     x_rand[int(ind[1]) - 1] = tuple(xi_rand)
                # elif truth[key]:
                #     # move towards target position
                #     if not key in x_label:
                #         ind = key.split('_')
                #         weight = 1
                #         if np.random.uniform(0, 1, 1) <= weight:
                #             tg = self.target(x_rand[int(ind[1]) - 1], ind[0], regions)
                #             # tg = self.target(orig_x_rand, ind[0], regions)
                #             x_rand[int(ind[1]) - 1] = self.gaussian_guided(x_rand[int(ind[1]) - 1], tg)
                #         else:
                #             xi_rand = []
                #             for i in range(self.dim):
                #                 xi_rand.append(uniform(0, self.ts['workspace'][i]))
                #             x_rand[int(ind[1]) - 1] = tuple(xi_rand)
                ind = key.split('_')
                orig_x_rand = x_rand[int(ind[1]) - 1]  # save
                while 1:
                    x_rand[int(ind[1]) - 1] = orig_x_rand  # recover
                    # if in wrong position, sample randomly
                    if not truth[key] and key in x_label:
                        xi_rand = []
                        for i in range(self.dim):
                            xi_rand.append(uniform(0, self.ts['workspace'][i]))
                        # ind = key.split('_')
                        x_rand[int(ind[1]) - 1] = tuple(xi_rand)
                    elif truth[key]:
                        # move towards target position
                        if not key in x_label:
                            # ind = key.split('_')
                            weight = 0.8
                            if np.random.uniform(0, 1, 1) <= weight:
                                # tg = self.target(x_rand[int(ind[1]) - 1], ind[0], regions)
                                tg = self.target(orig_x_rand, ind[0], regions)
                                x_rand[int(ind[1]) - 1] = self.gaussian_guided(
                                    orig_x_rand, tg)
                            else:
                                xi_rand = []
                                for i in range(self.dim):
                                    xi_rand.append(
                                        uniform(0, self.ts['workspace'][i]))
                                x_rand[int(ind[1]) - 1] = tuple(xi_rand)
                    else:
                        break
                    if self.collision_avoidance(x_rand, int(ind[1]) - 1):
                        break

            #   x_rand                  x_nearest
        return self.mulp2sglp(x_rand), q_rand
        # return x_rand

    def sample(self, buchi_graph, min_qb_dict, regions):
        """
        sample point from the workspace
        :return: sampled point, tuple
        """
        if self.seg == 'pre':
            b_final = buchi_graph.graph['accept'][np.random.randint(
                0, len(buchi_graph.graph['accept'])
            )]  # feasible final buchi state
        else:
            b_final = buchi_graph.graph['accept']
        # collects the buchi state in the tree with minimum distance to the final state
        b_min = self.min2final(min_qb_dict, b_final, self.group.keys())
        # partition of nodes
        q_min2final, q_minNot2final = self.all2one(b_min)
        # sample random nodes
        p_rand = np.random.uniform(0, 1, 1)
        if (p_rand <= self.p and len(q_min2final) > 0) or not q_minNot2final:
            q_rand = q_min2final[np.random.randint(0, len(q_min2final))]
        elif p_rand > self.p or not q_min2final:
            q_rand = q_minNot2final[np.random.randint(0, len(q_minNot2final))]
        # find feasible succssor of buchi state in q_rand
        Rb_q_rand = []
        x_label = []
        for i in range(self.robot):
            l = self.label(q_rand[0][i])
            if l != '':
                l = l + '_' + str(i + 1)
            x_label.append(l)

        for b_state in buchi_graph.succ[q_rand[1]]:
            # if self.t_satisfy_b(x_label, buchi_graph.edges[(q_rand[1], b_state)]['label']):
            if self.t_satisfy_b_truth(
                    x_label, buchi_graph.edges[(q_rand[1], b_state)]['truth']):
                Rb_q_rand.append(b_state)
        # if empty
        if not Rb_q_rand:
            return Rb_q_rand, Rb_q_rand
        # collects the buchi state in the reachable set of qb_rand with minimum distance to the final state
        b_min = self.min2final(min_qb_dict, b_final, Rb_q_rand)

        # collects the buchi state in the reachable set of b_min with distance to the final state equal to that of b_min - 1
        decr_dict = dict()
        for b_state in b_min:
            decr = []
            for succ in buchi_graph.succ[b_state]:
                if min_qb_dict[(b_state, b_final)] - 1 == min_qb_dict[(
                        succ, b_final)] or succ in buchi_graph.graph['accept']:
                    decr.append(succ)
            decr_dict[b_state] = decr
        M_cand = [
            b_state for b_state in decr_dict.keys() if decr_dict[b_state]
        ]
        # if empty
        if not M_cand:
            return M_cand, M_cand
        # sample b_min and b_decr
        b_min = M_cand[np.random.randint(0, len(M_cand))]
        b_decr = decr_dict[b_min][np.random.randint(0, len(decr_dict[b_min]))]

        # b_label = buchi_graph.edges[(b_min, b_decr)]['label']
        # x_rand = list(q_rand[0])
        #
        # return self.buchi_guided_sample_by_label(x_rand, b_label, x_label, regions)

        truth = buchi_graph.edges[(b_min, b_decr)]['truth']
        x_rand = list(q_rand[0])
        return self.buchi_guided_sample_by_truthvalue(truth, x_rand, q_rand,
                                                      x_label, regions)

        #   x_rand                  x_nearest
        # return self.mulp2sglp(x_rand), self.mulp2sglp(q_rand[0])

        # return x_rand

    # def nearest(self, x_rand):
    #     """
    #     find the nearest vertex in the tree
    #     :param: x_rand randomly sampled point form: single point ()
    #     :return: nearest vertex form: single point ()
    #     """
    #     min_dis = math.inf
    #     x_nearest = x_rand
    #     for vertex in self.tree.nodes:
    #         x_vertex = self.mulp2sglp(vertex[0])
    #         dis = np.linalg.norm(np.subtract(x_rand, x_vertex))
    #         if dis < min_dis:
    #             x_nearest = x_vertex
    #             min_dis = dis
    #     return x_nearest

    def nearest(self, x_rand):
        """
        find the nearest class of vertices in the tree
        :param: x_rand randomly sampled point form: single point ()
        :return: nearest class of vertices form: single point ()
        """
        min_dis = math.inf
        q_nearest = []
        for vertex in self.tree.nodes:
            x_vertex = self.mulp2sglp(vertex[0])
            dis = np.linalg.norm(np.subtract(x_rand, x_vertex))
            if dis < min_dis:
                q_nearest = list()
                q_nearest.append(vertex)
                min_dis = dis
            elif dis == min_dis:
                q_nearest.append(vertex)
        return q_nearest

    def steer(self, x_rand, x_nearest):
        """
        steer
        :param: x_rand randomly sampled point form: single point ()
        :param: x_nearest nearest point in the tree form: single point ()
        :return: new point single point ()
        """
        #return np.asarray([0.8,0.4])
        if np.linalg.norm(np.subtract(x_rand, x_nearest)) <= self.step_size:
            return x_rand
        else:
            return tuple(
                np.asarray(x_nearest) + self.step_size *
                (np.subtract(x_rand, x_nearest)) /
                np.linalg.norm(np.subtract(x_rand, x_nearest)))

    def extend(self, q_new, near_v, label, obs_check):
        """
        :param: q_new: new state form: tuple (mulp, buchi)
        :param: near_v: near state form: tuple (mulp, buchi)
        :param: obs_check: check obstacle free  form: dict { (mulp, mulp): True }
        :return: extending the tree
        """
        added = 0
        cost = np.inf
        q_min = ()
        for near_vertex in near_v:
            if q_new != near_vertex and obs_check[(
                    q_new[0], near_vertex[0])] and self.checkTranB(
                        near_vertex[1], self.tree.nodes[near_vertex]['label'],
                        q_new[1]):
                c = self.tree.nodes[near_vertex]['cost'] + np.linalg.norm(
                    np.subtract(self.mulp2sglp(q_new[0]),
                                self.mulp2sglp(
                                    near_vertex[0])))  # don't consider control
                if c < cost:
                    added = 1
                    q_min = near_vertex
                    cost = c
        if added == 1:
            self.tree.add_node(q_new, cost=cost, label=label)
            self.tree.add_edge(q_min, q_new)
            self.add_group(q_new)
            if self.seg == 'pre' and q_new[1] in self.acpt:
                q_n = list(list(self.tree.pred[q_new].keys())[0])
                cost = self.tree.nodes[tuple(q_n)]['cost']
                label = self.tree.nodes[tuple(q_n)]['label']
                q_n[1] = q_new[1]
                q_n = tuple(q_n)
                self.tree.add_node(q_n, cost=cost, label=label)
                self.tree.add_edge(q_min, q_n)
                self.add_group(q_n)
                self.goals.append(q_n)

            if self.seg == 'suf' and self.checkTranB(q_new[1], label,
                                                     self.init[1]):
                print('final')

            if self.seg == 'suf' and self.obs_check(
                [self.init], q_new[0], label,
                    'final')[(q_new[0], self.init[0])] and self.checkTranB(
                        q_new[1], label, self.init[1]):
                # if self.seg == 'suf' and self.init in near_v and obs_check[(q_new[0], self.init[0])] and self.checkTranB(q_new[1], label, self.init[1]):
                self.goals.append(q_new)
        return added

    def rewire(self, q_new, near_v, obs_check):
        """
        :param: q_new: new state form: tuple (mul, buchi)
        :param: near_v: near state form: tuple (mul, buchi)
        :param: obs_check: check obstacle free form: dict { (mulp, mulp): True }
        :return: rewiring the tree
        """
        for near_vertex in near_v:
            if obs_check[(q_new[0], near_vertex[0])] and self.checkTranB(
                    q_new[1], self.tree.nodes[q_new]['label'], near_vertex[1]):
                c = self.tree.nodes[q_new]['cost'] + np.linalg.norm(
                    np.subtract(self.mulp2sglp(
                        q_new[0]), self.mulp2sglp(
                            near_vertex[0])))  # without considering control
                delta_c = self.tree.nodes[near_vertex]['cost'] - c
                # update the cost of node in the subtree rooted at near_vertex
                if delta_c > 0:
                    # self.tree.nodes[near_vertex]['cost'] = c
                    if not list(self.tree.pred[near_vertex].keys()):
                        print('empty')
                    self.tree.remove_edge(
                        list(self.tree.pred[near_vertex].keys())[0],
                        near_vertex)
                    self.tree.add_edge(q_new, near_vertex)
                    edges = dfs_labeled_edges(self.tree, source=near_vertex)
                    for _, v, d in edges:
                        if d == 'forward':
                            self.tree.nodes[v][
                                'cost'] = self.tree.nodes[v]['cost'] - delta_c

    def near(self, x_new):
        """
        find the states in the near ball
        :param x_new: new point form: single point
        :return: p_near: near state, form: tuple (mulp, buchi)
        """
        p_near = []
        r = min(
            self.gamma * np.power(
                np.log(self.tree.number_of_nodes() + 1) /
                self.tree.number_of_nodes(), 1. / (self.dim * self.robot)),
            self.step_size)
        for vertex in self.tree.nodes:
            if np.linalg.norm(np.subtract(x_new, self.mulp2sglp(
                    vertex[0]))) <= r:
                p_near.append(vertex)
        return p_near

    def obs_check(self, q_near, x_new, label, stage):
        """
        check whether obstacle free along the line from x_near to x_new
        :param q_near: states in the near ball, tuple (mulp, buchi)
        :param x_new: new state form: multiple point
        :param label: label of x_new
        :param stage: regular stage or final stage, deciding whether it's goal state
        :return: dict (x_near, x_new): true (obs_free)
        """
        # x_new =  ((0.8944144022556246, 0.33267910821176216),)
        # label = ['l3_1']
        # q_near = [(((0.8, 0.1),), 'T0_init'), (((0.9115062737314963, 0.10325925485437781),), 'T0_init')]

        obs_check_dict = {}
        for x in q_near:
            obs_check_dict[(x_new, x[0])] = True
            flag = True  # indicate whether break and jump to outer loop
            for r in range(self.robot):
                for i in range(1, 11):
                    mid = tuple(
                        np.asarray(x[0][r]) +
                        i / 10. * np.subtract(x_new[r], x[0][r]))
                    mid_label = self.label(mid)
                    if mid_label != '':
                        mid_label = mid_label + '_' + str(r + 1)
                    if stage == 'reg' and (
                            'o' in mid_label or
                        (mid_label != self.tree.nodes[x]['label'][r]
                         and mid_label != label[r])):
                        #                      obstacle             pass through one region more than once
                        obs_check_dict[(x_new, x[0])] = False
                        flag = False
                        break
                    # elif stage == 'final' and ('o' in mid_label or (mid_label != self.tree.nodes[x]['label'][r] and mid_label != label[r] and mid_label != '')):
                    #                             obstacle             cannot pass through one region more than once expcet unlabeled region
                    elif stage == 'final' and (
                            'o' in mid_label or
                        (mid_label != self.tree.nodes[x]['label'][r]
                         and mid_label != label[r] and mid_label in self.no)):
                        obs_check_dict[(x_new, x[0])] = False
                        flag = False
                        break
                if not flag:
                    break

        return obs_check_dict

    def label(self, x):
        """
        generating the label of position state
        :param x: position
        :return: label
        """
        # whether x lies within obstacle
        for (obs, boundary) in iter(self.ts['obs'].items()):
            if obs[1] == 'b' and np.linalg.norm(np.subtract(
                    x, boundary[0:-1])) <= boundary[-1]:
                return obs[0]
            elif obs[1] == 'p':
                dictator = True
                for i in range(len(boundary)):
                    if np.dot(x, boundary[i][0:-1]) + boundary[i][-1] > 0:
                        dictator = False
                        break
                if dictator == True:
                    return obs[0]

        # whether x lies within regions
        for (regions, boundary) in iter(self.ts['region'].items()):
            if regions[1] == 'b' and np.linalg.norm(
                    x - np.asarray(boundary[0:-1])) <= boundary[-1]:
                return regions[0]
            elif regions[1] == 'p':
                dictator = True
                for i in range(len(boundary)):
                    if np.dot(x, np.asarray(
                            boundary[i][0:-1])) + boundary[i][-1] > 0:
                        dictator = False
                        break
                if dictator == True:
                    return regions[0]

        return ''

    def checkTranB(self, b_state, x_label, q_b_new):
        """ decide valid transition, whether b_state --L(x)---> q_b_new
             Algorithm2 in Chapter 2 Motion and Task Planning
             :param b_state: buchi state
             :param x_label: label of x
             :param q_b_new buchi state
             :return True satisfied
        """
        b_state_succ = self.buchi_graph.succ[b_state]
        # q_b_new is not the successor of b_state
        if q_b_new not in b_state_succ:
            return False

        # b_label = self.buchi_graph.edges[(b_state, q_b_new)]['label']
        # if self.t_satisfy_b(x_label, b_label):
        #     return True

        truth = self.buchi_graph.edges[(b_state, q_b_new)]['truth']
        if self.t_satisfy_b_truth(x_label, truth):
            return True

    def t_satisfy_b(self, x_label, b_label):
        """ decide whether label of self.ts_graph can satisfy label of self.buchi_graph
            :param x_label: label of x
            :param b_label: label of buchi state
            :return t_s_b: true if satisfied
        """
        t_s_b = True
        # split label with ||
        b_label = b_label.split('||')
        for label in b_label:
            t_s_b = True
            # spit label with &&
            atomic_label = label.split('&&')
            for a in atomic_label:
                a = a.strip()
                a = a.strip('(')
                a = a.strip(')')
                if a == '1':
                    continue
                # whether ! in an atomic proposition
                if '!' in a:
                    if a[1:] in x_label:
                        t_s_b = False
                        break
                else:
                    if not a in x_label:
                        t_s_b = False
                        break
            # either one of || holds
            if t_s_b:
                return t_s_b
        return t_s_b

    def t_satisfy_b_truth(self, x_label, truth):
        """
        check whether transition enabled under current label
        :param x_label: current label
        :param truth: truth value making transition enabled
        :return: true or false
        """
        if truth == '1':
            return True

        true_label = [
            truelabel for truelabel in truth.keys() if truth[truelabel]
        ]
        for label in true_label:
            if label not in x_label:
                return False

        false_label = [
            falselabel for falselabel in truth.keys() if not truth[falselabel]
        ]
        for label in false_label:
            if label in x_label:
                return False

        return True

    def findpath(self, goals):
        """
        find the path backwards
        :param goal: goal state
        :return: dict path : cost
        """
        paths = OrderedDict()
        for i in range(len(goals)):
            goal = goals[i]
            path = [goal]
            s = goal
            while s != self.init:
                s = list(self.tree.pred[s].keys())[0]
                if s == path[0]:
                    print("loop")
                path.insert(0, s)

            if self.seg == 'pre':
                paths[i] = [self.tree.nodes[goal]['cost'], path]
            elif self.seg == 'suf':
                # path.append(self.init)
                paths[i] = [
                    self.tree.nodes[goal]['cost'] +
                    np.linalg.norm(np.subtract(goal[0], self.init[0])), path
                ]
        return paths

    def mulp2sglp(self, point):
        """
        convert multiple form point ((),(),(),...) to single form point ()
        :param point: multiple points ((),(),(),...)
        :return: signle point ()
        """
        sp = []
        for p in point:
            sp = sp + list(p)
        return tuple(sp)

    def sglp2mulp(self, point):
        """
        convert single form point () to multiple form point ((), (), (), ...)
        :param point: single form point ()
        :return:  multiple form point ((), (), (), ...)
        """
        mp = []
        for i in range(self.robot):
            mp.append(point[i * self.dim:(i + 1) * self.dim])
        return tuple(mp)
Esempio n. 2
0
class tree(object):
    """ construction of prefix and suffix tree
    """
    def __init__(self, ts, buchi_graph, init, step_size, base=1e3):
        """
        :param ts: transition system
        :param buchi_graph:  Buchi graph
        :param init: product initial state
        """
        self.robot = 1
        self.goals = []
        self.ts = ts
        self.buchi_graph = buchi_graph
        self.init = init
        self.step_size = step_size
        self.dim = len(self.ts['workspace'])
        uni_v = np.power(np.pi, self.robot * self.dim /
                         2) / math.gamma(self.robot * self.dim / 2 + 1)
        self.gamma = np.ceil(
            4 * np.power(1 / uni_v, 1. /
                         (self.dim * self.robot)))  # unit workspace
        self.tree = DiGraph(type='PBA', init=init)
        label = self.label(init[0])
        if label != '':
            label = label + '_' + str(1)
        # accepting state before current node
        acc = set()
        if 'accept' in init[1]:
            acc.add(init)
        self.tree.add_node(init, cost=0, label=label, acc=acc)
        self.search_goal(init, label, acc)

        # already used skilles
        self.used = set()
        self.base = base

    def sample(self):
        """
        sample point from the workspace
        :return: sampled point, tuple
        """
        x_rand = []
        for i in range(self.dim):
            x_rand.append(uniform(0, self.ts['workspace'][i]))

        return tuple(x_rand)

    def nearest(self, x_rand):
        """
        find the nearest class of vertices in the tree
        :param: x_rand randomly sampled point form: single point ()
        :return: nearest class of vertices form: single point ()
        """
        min_dis = math.inf
        q_nearest = []
        for vertex in self.tree.nodes:
            x_vertex = vertex[0]
            dis = np.linalg.norm(np.subtract(x_rand, x_vertex))
            if dis < min_dis:
                q_nearest = list()
                q_nearest.append(vertex)
                min_dis = dis
            elif dis == min_dis:
                q_nearest.append(vertex)
        return q_nearest

    def steer(self, x_rand, x_nearest):
        """
        steer
        :param: x_rand randomly sampled point form: single point ()
        :param: x_nearest nearest point in the tree form: single point ()
        :return: new point single point ()
        """
        if np.linalg.norm(np.subtract(x_rand, x_nearest)) <= self.step_size:
            return x_rand
        else:
            return tuple(
                np.asarray(x_nearest) + self.step_size *
                (np.subtract(x_rand, x_nearest)) /
                np.linalg.norm(np.subtract(x_rand, x_nearest)))

    def acpt_check(self, q_min, q_new):
        """
        check the accepting state in the patg leading to q_new
        :param q_min:
        :param q_new:
        :return:
        """
        changed = False
        acc = set(self.tree.nodes[q_min]['acc'])  # copy
        if 'accept' in q_new[1]:
            acc.add(q_new)
            # print(acc)
            changed = True
        return acc, changed

    def search_goal(self, q_new, label_new, acc):
        """
        whether q_new can connect to point before acc
        :param q_new:
        :param label_new:
        :param acc:
        :return:
        """
        for ac in acc:
            # connect to path leading to accepting state, including accepting state
            path = self.findpath([ac])[0][1]
            for point in path:
                if list(self.obs_check([q_new], point[0], self.tree.nodes[point]['label']).values())[0] \
                        and self.checkTranB(q_new[1], label_new, point[1]):
                    self.goals.append(
                        (q_new, point,
                         ac))  # endpoint, middle point, accepting point

    def extend(self, q_new, near_v, label, obs_check, succ_list):
        """
        :param: q_new: new state form: tuple (mulp, buchi)
        :param: near_v: near state form: tuple (mulp, buchi)
        :param: obs_check: check obstacle free  form: dict { (mulp, mulp): True }
        :param: succ: list of successor of the root
        :return: extending the tree
        """
        added = 0
        cost = np.inf
        q_min = ()
        for near_vertex in near_v:
            if near_vertex in succ_list:  # do not extend if there is a corresponding root
                continue
            if q_new != near_vertex and obs_check[(q_new[0], near_vertex[0])] \
                    and self.checkTranB(near_vertex[1], self.tree.nodes[near_vertex]['label'], q_new[1]):
                c = self.tree.nodes[near_vertex]['cost'] + \
                    np.linalg.norm(np.subtract(q_new[0], near_vertex[0]))
                if c < cost:
                    added = 1
                    q_min = near_vertex
                    cost = c
        if added == 1:
            self.tree.add_node(q_new, cost=cost, label=label)
            self.tree.nodes[q_new]['acc'] = set(
                self.acpt_check(q_min, q_new)[0])
            self.tree.add_edge(q_min, q_new)
            # self.search_goal(q_new, label, self.tree.nodes[q_new]['acc'])
        return added

    def rewire(self, q_new, near_v, obs_check):
        """
        :param: q_new: new state form: tuple (mul, buchi)
        :param: near_v: near state form: tuple (mul, buchi)
        :param: obs_check: check obstacle free form: dict { (mulp, mulp): True }
        :return: rewiring the tree
        """
        for near_vertex in near_v:
            if obs_check[(q_new[0], near_vertex[0])] \
                    and self.checkTranB(q_new[1], self.tree.nodes[q_new]['label'], near_vertex[1]):
                c = self.tree.nodes[q_new]['cost'] \
                    + np.linalg.norm(np.subtract(q_new[0], near_vertex[0]))
                delta_c = self.tree.nodes[near_vertex]['cost'] - c
                # update the cost of node in the subtree rooted at near_vertex
                if delta_c > 0:
                    # self.tree.nodes[near_vertex]['cost'] = c
                    self.tree.remove_edge(
                        list(self.tree.pred[near_vertex].keys())[0],
                        near_vertex)
                    self.tree.add_edge(q_new, near_vertex)
                    edges = dfs_labeled_edges(self.tree, source=near_vertex)
                    acc, changed = self.acpt_check(q_new, near_vertex)
                    self.tree.nodes[near_vertex]['acc'] = set(acc)
                    for u, v, d in edges:
                        if d == 'forward':
                            self.tree.nodes[v][
                                'cost'] = self.tree.nodes[v]['cost'] - delta_c
                            if changed:
                                self.tree.nodes[v]['acc'] = set(
                                    self.acpt_check(u, v)[0])  # copy
        # better to research the goal but abandon the implementation

    def near(self, x_new):
        """
        find the states in the near ball
        :param x_new: new point form: single point
        :return: p_near: near state, form: tuple (mulp, buchi)
        """
        p_near = []
        r = min(
            self.gamma * np.power(
                np.log(self.tree.number_of_nodes() + 1) /
                self.tree.number_of_nodes(), 1. / (self.dim * self.robot)),
            self.step_size)
        # r = self.step_size
        for vertex in self.tree.nodes:
            if np.linalg.norm(np.subtract(x_new, vertex[0])) <= r:
                p_near.append(vertex)
        return p_near

    def obs_check(self, q_near, x_new, label):
        """
        check whether obstacle free along the line from x_near to x_new
        :param q_near: states in the near ball, tuple (mulp, buchi)
        :param x_new: new state form: multiple point
        :param label: label of x_new
        :param stage: regular stage or final stage, deciding whether it's goal state
        :return: dict (x_near, x_new): true (obs_free)
        """

        obs_check_dict = {}
        checked = set()

        for x in q_near:
            if x[0] in checked:
                continue
            checked.add(x[0])
            obs_check_dict[(x_new, x[0])] = True

            # the line connecting two points crosses an obstacle
            for (obs, boundary) in iter(self.ts['obs'].items()):
                if LineString([Point(x[0]),
                               Point(x_new)]).intersects(boundary):
                    obs_check_dict[(x_new, x[0])] = False
                    break

            for (region, boundary) in iter(self.ts['region'].items()):
                if LineString([Point(x[0]), Point(x_new)]).intersects(boundary) \
                        and region + '_' + str(1) != label \
                        and region + '_' + str(1) != self.tree.nodes[x]['label']:
                    # if stage == 'reg' or (stage == 'final' and region in self.no):
                    obs_check_dict[(x_new, x[0])] = False
                    break

        return obs_check_dict

    def label(self, x):
        """
        generating the label of position state
        :param x: position
        :return: label
        """

        point = Point(x)
        # whether x lies within obstacle
        for (obs, boundary) in iter(self.ts['obs'].items()):
            if point.within(boundary):
                return obs

        # whether x lies within regions
        for (region, boundary) in iter(self.ts['region'].items()):
            if point.within(boundary):
                return region
        # x lies within unlabeled region
        return ''

    def checkTranB(self, b_state, x_label, q_b_new):
        """ decide valid transition, whether b_state --L(x)---> q_b_new
             Algorithm2 in Chapter 2 Motion and Task Planning
             :param b_state: buchi state
             :param x_label: label of x
             :param q_b_new buchi state
             :return True satisfied
        """
        b_state_succ = self.buchi_graph.succ[b_state]
        # q_b_new is not the successor of b_state
        if q_b_new not in b_state_succ:
            return False

        truth = self.buchi_graph.edges[(b_state, q_b_new)]['truth']
        if self.t_satisfy_b_truth(x_label, truth):
            return True

        return False

    def t_satisfy_b_truth(self, x_label, truth):
        """
        check whether transition enabled under current label
        :param x_label: current label
        :param truth: truth value making transition enabled
        :return: true or false
        """
        if truth == '1':
            return True

        true_label = [
            truelabel for truelabel in truth.keys() if truth[truelabel]
        ]
        for label in true_label:
            if label not in x_label:
                return False

        false_label = [
            falselabel for falselabel in truth.keys() if not truth[falselabel]
        ]
        for label in false_label:
            if label in x_label:
                return False

        return True

    def findpath(self, goals):
        """
        find the path backwards
        :param goals: goal state
        :return: dict path : cost
        """
        paths = OrderedDict()
        for i in range(len(goals)):
            goal = goals[i]
            path = [goal]
            s = goal
            while s != self.init:
                s = list(self.tree.pred[s].keys())[0]
                if s == path[0]:
                    print("loop")
                path.insert(0, s)

            paths[i] = [self.tree.nodes[goal]['cost'], path]
        return paths
Esempio n. 3
0
def to_directed_tree_recur(di_g: DiGraph, node: int) -> None:
    children: AtlasView = di_g[node]
    if len(children) != 0:
        for child in children:
            di_g.remove_edge(child, node)
            to_directed_tree_recur(di_g, child)
Esempio n. 4
0
class unbiasedTree(object):
    """
    unbiased tree for prefix and suffix parts
    """
    def __init__(self, workspace, buchi, init_state, init_label, segment,
                 para):
        """
        initialization of the tree
        :param workspace: workspace
        :param buchi: buchi automaton
        :param init_state: initial location of the robots
        :param init_label: label generated by the initial location
        :param segment: prefix or suffix part
        :param para: parameters regarding unbiased-sampling method
        """
        # parameters regarding workspace
        self.workspace = workspace.workspace
        self.dim = len(self.workspace)
        self.regions = workspace.regions
        self.obstacles = workspace.obs
        self.robot = buchi.number_of_robots
        # parameters regarding task
        self.buchi = buchi
        self.accept = self.buchi.buchi_graph.graph['accept']
        self.init = init_state

        # initlizing the tree
        self.unbiased_tree = DiGraph(type='PBA', init=self.init)
        self.unbiased_tree.add_node(self.init, cost=0, label=init_label)

        # parameters regarding TL-RRT* algorithm
        self.goals = set()
        self.step_size = para['step_size']
        self.segment = segment
        self.lite = para['is_lite']
        # size of the ball used in function near
        uni_v = np.power(np.pi, self.robot * self.dim /
                         2) / math.gamma(self.robot * self.dim / 2 + 1)
        # self.gamma = np.ceil(4 * np.power(1 / uni_v, 1. / (self.dim * self.robot)))  # unit workspace
        self.gamma = (2 + 1 / 4) * np.power(
            (1 + 0.0 / 4) * 2.5 / (self.dim * self.robot + 1) / (1 / 4) /
            (1 - 0.0) * 0.84 / uni_v, 1. / (self.dim * self.robot + 1))

        # select final buchi states
        if self.segment == 'prefix':
            self.b_final = self.buchi.buchi_graph.graph['accept'][0]
        else:
            self.b_final = self.buchi.buchi_graph.graph['accept']

        # threshold for collision avoidance
        self.threshold = para['threshold']

    def sample(self):
        """
        sample point from the workspace
        :return: sampled point, tuple
        """
        x_rand = []
        for i in range(self.dim):
            x_rand.append(uniform(0, self.workspace[i]))

        return tuple(x_rand)

    def collision_avoidance(self, x, robot_index):
        """
        check whether robots with smaller index than robot_index collide with the robot of index robot_index
        :param x: position of robots
        :param robot_index: index of the specific robot
        :return: true if collision free
        """
        for i in range(len(x)):
            if i != robot_index and np.fabs(x[i][0] - x[robot_index][0]) <= self.threshold and \
                            np.fabs(x[i][1] - x[robot_index][1]) <= self.threshold:
                return False
        return True

    def nearest(self, x_rand):
        """
        find the nearest class of vertices in the tree
        :param: x_rand randomly sampled point form: single point ()
        :return: nearest class of vertices form: single point ()
        """
        min_dis = math.inf
        q_p_nearest = []
        for node in self.unbiased_tree.nodes:
            x = self.mulp2single(node[0])
            dis = np.linalg.norm(np.subtract(x_rand, x))
            if dis < min_dis:
                q_p_nearest = [node]
                min_dis = dis
            elif dis == min_dis:
                q_p_nearest.append(node)
        return q_p_nearest

    def steer(self, x_rand, x_nearest):
        """
        steer
        :param: x_rand randomly sampled point form: single point ()
        :param: x_nearest nearest point in the tree form: single point ()
        :return: new point single point ()
        """
        if np.linalg.norm(np.subtract(x_rand, x_nearest)) <= self.step_size:
            return x_rand
        else:
            return tuple(
                map(
                    tuple,
                    np.asarray(x_nearest) + self.step_size *
                    (np.subtract(x_rand, x_nearest)) /
                    np.linalg.norm(np.subtract(x_rand, x_nearest))))

    def extend(self, q_new, near_nodes, label, obs_check):
        """
        add the new sate q_new to the tree
        :param: q_new: new state
        :param: near_nodes: near state
        :param: obs_check: check the line connecting two points are inside the freespace
        :return: the tree after extension
        """
        added = False
        cost = np.inf
        q_min = ()
        # loop over all nodes in near_nodes
        for node in near_nodes:
            if q_new != node and obs_check[(q_new[0], node[0])] and \
                    self.check_transition_b(node[1], self.unbiased_tree.nodes[node]['label'], q_new[1]):
                c = self.unbiased_tree.nodes[node]['cost'] \
                    + np.linalg.norm(np.subtract(self.mulp2single(q_new[0]), self.mulp2single(node[0])))
                if c < cost:
                    added = True
                    q_min = node
                    cost = c
        if added:
            self.unbiased_tree.add_node(q_new, cost=cost, label=label)
            self.unbiased_tree.add_edge(q_min, q_new)
            if self.segment == 'prefix' and q_new[1] in self.accept:
                q_n = list(list(self.unbiased_tree.pred[q_new].keys())[0])
                cost = self.unbiased_tree.nodes[tuple(q_n)]['cost']
                label = self.unbiased_tree.nodes[tuple(q_n)]['label']
                q_n[1] = q_new[1]
                q_n = tuple(q_n)
                if q_n != q_min:
                    self.unbiased_tree.add_node(q_n, cost=cost, label=label)
                    self.unbiased_tree.add_edge(q_min, q_n)
                    self.goals.add(q_n)
            # if self.segment == 'suffix' and \
            #         self.obstacle_check([self.init], q_new[0], label)[(q_new[0], self.init[0])] \
            #         and self.check_transition_b(q_new[1], label, self.init[1]):
            #     self.goals.add(q_new)

            elif self.segment == 'suffix' and self.init[1] == q_new[1]:
                self.goals.add(q_new)
        return added

    def rewire(self, q_new, near_nodes, obs_check):
        """
        :param: q_new: new state
        :param: near_nodes: states returned near
        :param: obs_check: check whether obstacle-free
        :return: the tree after rewiring
        """
        for node in near_nodes:
            if obs_check[(q_new[0], node[0])] \
                    and self.check_transition_b(q_new[1], self.unbiased_tree.nodes[q_new]['label'], node[1]):
                c = self.unbiased_tree.nodes[q_new]['cost'] \
                    + np.linalg.norm(np.subtract(self.mulp2single(q_new[0]), self.mulp2single(node[0])))
                delta_c = self.unbiased_tree.nodes[node]['cost'] - c
                # update the cost of node in the subtree rooted at the rewired node
                if delta_c > 0:
                    self.unbiased_tree.remove_edge(
                        list(self.unbiased_tree.pred[node].keys())[0], node)
                    self.unbiased_tree.add_edge(q_new, node)
                    edges = dfs_labeled_edges(self.unbiased_tree, source=node)
                    for _, v, d in edges:
                        if d == 'forward':
                            self.unbiased_tree.nodes[v][
                                'cost'] = self.unbiased_tree.nodes[v][
                                    'cost'] - delta_c

    def near(self, x_new):
        """
        find the states in the near ball
        :param x_new: new point form: single point
        :return: p_near: near state, form: tuple (mulp, buchi)
        """
        near_nodes = []
        radius = min(
            self.gamma * np.power(
                np.log(self.unbiased_tree.number_of_nodes() + 1) /
                self.unbiased_tree.number_of_nodes(), 1. /
                (self.dim * self.robot)), self.step_size)
        for node in self.unbiased_tree.nodes:
            if np.linalg.norm(np.subtract(x_new, self.mulp2single(
                    node[0]))) <= radius:
                near_nodes.append(node)
        return near_nodes

    def obstacle_check(self, near_node, x_new, label):
        """
        check whether line from x_near to x_new is obstacle-free
        :param near_node: nodes returned by near function
        :param x_new: new position component
        :param label: label of x_new
        :return: a dictionary indicating whether the line connecting two points are obstacle-free
        """

        obs_check = {}
        checked = set()

        for node in near_node:
            # whether the position component of nodes has been checked
            if node[0] in checked:
                continue
            checked.add(node[0])
            obs_check[(x_new, node[0])] = True
            flag = True  # indicate whether break and jump to outer loop
            for r in range(self.robot):
                # the line connecting two points crosses an obstacle
                for (obs, boundary) in iter(self.obstacles.items()):
                    if LineString([Point(node[0][r]),
                                   Point(x_new[r])]).intersects(boundary):
                        obs_check[(x_new, node[0])] = False
                        flag = False
                        break
                # no need to check further
                if not flag:
                    break

                for (region, boundary) in iter(self.regions.items()):
                    if LineString([Point(node[0][r]), Point(x_new[r])]).intersects(boundary) \
                            and region + '_' + str(r + 1) != label[r] \
                            and region + '_' + str(r + 1) != self.unbiased_tree.nodes[node]['label'][r]:
                        obs_check[(x_new, node[0])] = False
                        flag = False
                        break
                # no need to check further
                if not flag:
                    break

        return obs_check

    def get_label(self, x):
        """
        generating the label of position component
        :param x: position
        :return: label
        """
        point = Point(x)
        # whether x lies within obstacle
        for (obs, boundary) in iter(self.obstacles.items()):
            if point.within(boundary):
                return obs

        # whether x lies within regions
        for (region, boundary) in iter(self.regions.items()):
            if point.within(boundary):
                return region
        # x lies within unlabeled region
        return ''

    def check_transition_b(self, q_b, x_label, q_b_new):
        """
        check whether q_b -- x_label ---> q_b_new
        :param q_b: buchi state
        :param x_label: label of x
        :param q_b_new: buchi state
        :return True if satisfied
        """
        b_state_succ = self.buchi.buchi_graph.succ[q_b]
        # q_b_new is not the successor of b_state
        if q_b_new not in b_state_succ:
            return False
        # check whether label of x enables the transition
        truth = self.buchi.buchi_graph.edges[(q_b, q_b_new)]['truth']
        if self.check_transition_b_helper(x_label, truth):
            return True

        return False

    def check_transition_b_helper(self, x_label, truth):
        """
        check whether transition enabled with current generated label
        :param x_label: label of the current position
        :param truth: symbol enabling the transition
        :return: true or false
        """
        if truth == '1':
            return True
        # all true propositions should be satisdied
        true_label = [
            true_label for true_label in truth.keys() if truth[true_label]
        ]
        for label in true_label:
            if label not in x_label: return False

        # all fasle propositions should not be satisfied
        false_label = [
            false_label for false_label in truth.keys()
            if not truth[false_label]
        ]
        for label in false_label:
            if label in x_label: return False

        return True

    def find_path(self, goals):
        """
        find the path backwards
        :param goals: found all goal states
        :return: the path leading to the goal state and the corresponding cost
        """
        paths = OrderedDict()
        for i in range(len(goals)):
            goals = list(goals)
            goal = goals[i]
            path = [goal]
            s = goal
            while s != self.init:
                s = list(self.unbiased_tree.pred[s].keys())[0]
                path.insert(0, s)
            if self.segment == 'prefix':
                paths[i] = [self.unbiased_tree.nodes[goal]['cost'], path]
            elif self.segment == 'suffix':
                path.append(self.init)
                paths[i] = [
                    self.unbiased_tree.nodes[goal]['cost'] + np.linalg.norm(
                        np.subtract(self.mulp2single(goal[0]),
                                    self.mulp2single(self.init[0]))), path
                ]

        return paths

    def mulp2single(self, point):
        """
        convert a point, which in the form of a tuple of tuple ((),(),(),...) to point in the form of a flat tuple
        :param point: point((position of robot 1), (position of robot2), (), ...)
        :return: point (position of robot1, position of robot2, ...)
        """
        return tuple([p for r in point for p in r])

    def single2mulp(self, point):
        """
        convert a point in the form of flat tuple to point in the form of a tuple of tuple ((),(),(),...)
        :param point: point (position of robot1, position of robot2, ...)
        :return:  point((position of robot 1), (position of robot2), (), ...)
        """
        mp = [
            point[i * self.dim:(i + 1) * self.dim] for i in range(self.robot)
        ]
        return tuple(mp)
Esempio n. 5
0
class buchi_graph(object):
    """ construct buchi automaton graph
    Parameter:
        formula: LTL formula specifying task
    """

    def __init__(self, formula, formula_comp, exclusion):
        self.formula = formula
        self.formula_comp = formula_comp
        self.exclusion = exclusion

    def formulaParser(self):
        """replace letter with symbol
        """
        indicator = 'FG'

        if [True for i in indicator if i in self.formula]:
            self.formula.replace('F', '<>').replace('G', '[]')

    def execLtl2ba(self):
        """ given formula, exectute the ltl2ba
        Parameter:
            buchi_str: output string of program ltl2ba  (utf-8 format)
        """

        dirname = os.path.dirname(__file__)
        self.buchi_str = subprocess.check_output(dirname + "/./ltl2ba -f \"" + self.formula + "\"", shell=True).decode("utf-8")

    def buchiGraph(self):
        """parse the output of ltl2ba
        Parameter:
            buchi_graph: Graph of buchi automaton
        """
        # find all states
        state_re = re.compile(r'\n(\w+):\n\t')
        state_group = re.findall(state_re, self.buchi_str)

        # find initial and accepting states
        init = [s for s in state_group if 'init' in s]
        accep = [s for s in state_group if 'accept' in s]

        """
        Format:
            buchi_graph.node = NodeView(('T0_init', 'T1_S1', 'accept_S1'))
            buchi_graph.edges = OutEdgeView([('T0_init', 'T0_init'), ('T0_init', 'T1_S1'),....])
            buchi_graph.succ = AdjacencyView({'T0_init': {'T0_init': {'label': '1'}, 'T1_S1': {'label': 'r3'}}})
        """
        self.buchi_graph = DiGraph(type='buchi', init=init, accept=accep)
        order_key = list(self.formula_comp.keys())
        order_key.sort(reverse=True)
        for state in state_group:
            # for each state, find transition relation
            # add node
            self.buchi_graph.add_node(state)
            state_if_fi = re.findall(state + r':\n\tif(.*?)fi', self.buchi_str, re.DOTALL)
            if state_if_fi:
                relation_group = re.findall(r':: (\(.*?\)) -> goto (\w+)\n\t', state_if_fi[0])
                for (labell, state_dest) in relation_group:
                    # whether the edge is feasible in terms of unit atomic proposition
                    label = self.InitialDelInfesEdge(labell)
                    if not label or label.isspace():
                        continue
                    # add edge
                    for k in order_key:
                        if k >= 10:
                            label = label.replace('e_{0}'.format(k), self.formula_comp[k])
                        else:
                            label = label.replace('e{0}'.format(k), self.formula_comp[k])
                    # if '!' in label:
                    #     label = self.PutNotInside(label)
                    self.buchi_graph.add_edge(state, state_dest, label=label)

        return self.buchi_graph

    def ShorestPathBtRg(self, regions):
        """
        calculate shoresr path between any two labeled regions
        :param regions: regions
        :return: dict (region, region) : length
        """
        polys = [[vg.Point(0.4, 1.0), vg.Point(0.4, 0.7), vg.Point(0.6, 0.7), vg.Point(0.6, 1.0)],
                 [vg.Point(0.3, 0.2), vg.Point(0.3, 0.0), vg.Point(0.7, 0.0), vg.Point(0.7, 0.2)]]
        g = vg.VisGraph()
        g.build(polys, status=False)

        min_len_region = dict()
        for key1, value1 in regions.items():
            for key2, value2 in regions.items():
                init = value1[:2]
                tg = value2[:2]
                # shorest path between init and tg point
                shortest = g.shortest_path(vg.Point(init[0], init[1]), vg.Point(tg[0], tg[1]))
                # (key2, key1) is already checked
                if (key2, key1) in min_len_region.keys():
                    min_len_region[(key1, key2)] = min_len_region[(key2, key1)]
                else:
                    # different regions
                    if key1 != key2:
                        dis = 0
                        for i in range(len(shortest)-1):
                            dis = dis + np.linalg.norm(np.subtract((shortest[i].x, shortest[i].y), (shortest[i+1].x, shortest[i+1].y)))

                        min_len_region[(key1, key2)] = dis
                    # same region
                    else:
                        min_len_region[(key1, key2)] = 0

        return min_len_region

    def RobotRegion(self, exp, robot):
        """
        pair of robot and corresponding regions in the expression
        :param exp: logical expression
        :param robot: # of robots
        :return: dic of robot index : regions
        exp = 'l1_1 & l3_1 & l4_1 & l4_6 | l3_4 & l5_6'
        {1: ['l1_1', 'l3_1', 'l4_1'], 4: ['l3_4'], 6: ['l4_6', 'l5_6']}
        """

        robot_region_dict = dict()
        for r in range(robot):
            findall = re.findall(r'(l\d+?_{0})[^0-9]'.format(r + 1), exp)
            if findall:
                robot_region_dict[str(r + 1)] = findall

        return robot_region_dict

    def FeasTruthTable(self, exp, robot_region):
        """
        Find feasible truth table to make exp true
        :param exp: expression
        :return:
        """
        if exp == '(1)':
            return '1'

        sgl_value = []
        for key, value in robot_region.items():
            if len(value) == 1:
                sgl_value.append(value[0])

        # set all to be false
        exp1 = to_cnf(exp)
        value_in_exp = [value.name for value in exp1.atoms()]
        subs = {true_rb_rg: False for true_rb_rg in value_in_exp}
        if exp1.subs(subs):
            return subs

        # set one to be true, the other to be false
        for prod in itertools.product(*robot_region.values()):
            exp1 = exp
            # set one specific item to be true
            for true_rb_rg in prod:
                # set the other to be false
                value_cp = list(robot_region[true_rb_rg.split('_')[1]])
                if len(value_cp) > 1:
                    value_cp.remove(true_rb_rg)
                    # replace the rest with same robot to be ~
                    for v_remove in value_cp:
                        exp1 = exp1.replace(v_remove, '~' + true_rb_rg)

            # simplify
            exp1 = to_cnf(exp1)
            # all value in expression
            value_in_exp = [value.name for value in exp1.atoms()]
            # all single value in expression
            sgl_value_in_exp = [value for value in value_in_exp if value in sgl_value]
            # not signle value in expression
            not_sgl_value_in_exp = [value for value in value_in_exp if value not in sgl_value]

            subs1 = {true_rb_rg: True for true_rb_rg in not_sgl_value_in_exp}

            tf = [False, True]
            # if type(exp1) == Or:
            #     tf = [False, True]

            if len(sgl_value_in_exp):
                for p in itertools.product(*[tf] * len(sgl_value_in_exp)):
                    subs2 = {sgl_value_in_exp[i]: p[i] for i in range(len(sgl_value_in_exp))}
                    subs = {**subs1, **subs2}
                    if exp1.subs(subs):
                        return subs
            else:
                if exp1.subs(subs1):
                    return subs1

        return []

    def DelInfesEdge(self, robot):
        """
        Delete infeasible edge
        :param buchi_graph: buchi automaton
        :param robot: # robot
        """
        TobeDel = []
        # print(self.buchi_graph.number_of_edges())
        i = 0
        for edge in self.buchi_graph.edges():
            i = i+1
            # print(i)
            b_label = self.buchi_graph.edges[edge]['label']
            # multiple labels
            if ') && (' in b_label:
                TobeDel.append(edge)
                continue
            if b_label != '(1)':
                exp = b_label.replace('||', '|').replace('&&', '&').replace('!', '~')
                truth = satisfiable(exp, algorithm="dpll")
                truth_table = dict()
                for key, value in truth.items():
                    truth_table[key.name] = value
                if not truth_table:
                    TobeDel.append(edge)
                else:
                    self.buchi_graph.edges[edge]['truth'] = truth_table
            else:
                self.buchi_graph.edges[edge]['truth'] = '1'

        for edge in TobeDel:
            self.buchi_graph.remove_edge(edge[0], edge[1])
        # print(self.buchi_graph.number_of_edges())

    def InitialDelInfesEdge(self, orig_label):
        div_by_or = orig_label.split(') || (')

        for item in div_by_or:
            feas = True
            for excl in self.exclusion:
                # mutual exclusion term exist
                if excl[0] in item and excl[1] in item and '!{0}'.format(excl[0]) not in item and '!{0}'.format(excl[1]) not in item:
                    feas = False
                    break
            if not feas:
                item = item.strip('(').strip(')')
                item = '(' + item + ')'
                orig_label = orig_label.replace(' '+item+' ||', '').replace(item+' || ','').replace(' || '+item,'').replace(item,'')

        return orig_label

    def MinLen(self):
        """
        search the shorest path from a node to another, weight = 1, i.e. # of state in the path
        :param buchi_graph:
        :return: dict of pairs of node : length of path
        """
        min_qb_dict = dict()
        for node1 in self.buchi_graph.nodes():
            for node2 in self.buchi_graph.nodes():
                if node1 != node2 and 'accept' in node2:
                    try:
                        l, _ = nx.algorithms.single_source_dijkstra(self.buchi_graph, source=node1, target=node2)
                    except nx.exception.NetworkXNoPath:
                        l = np.inf
                    min_qb_dict[(node1, node2)] = l
                elif node1 == node2 and 'accept' in node2:
                    l = np.inf
                    for succ in self.buchi_graph.succ[node1]:
                        try:
                            l0, _ = nx.algorithms.single_source_dijkstra(self.buchi_graph, source=succ, target=node1)
                        except nx.exception.NetworkXNoPath:
                            l0 = np.inf
                        if l0 < l:
                            l = l0 + 1
                    min_qb_dict[(node1, node2)] = l


        return min_qb_dict

    # def MinLen_Cost(self):
    #     """
    #     search the shorest path from a node to another, weight = cost
    #     :param buchi_graph:
    #     :return: dict of pairs of node : length of path
    #     """
    #     min_qb_dict = dict()
    #     for node1 in self.buchi_graph.nodes():
    #         for node2 in self.buchi_graph.nodes():
    #             c = np.inf
    #             if node1 != node2:
    #                 try:
    #                     path = nx.all_simple_paths(self.buchi_graph, source=node1, target=node2)
    #                     for i in range(len(path)-2):
    #                         word_init = self.buchi_graph.edges[(path[i], path[i+1])]['label']
    #                         word_tg = self.buchi_graph.edges[(path[i+1], path[i+2])]['label']
    #                         # calculate distance travelled from word_init to word_tg
    #                         t_s_b = True
    #                         # split label with ||
    #                         label_init = word_init.split('||')
    #                         label_tg = word_tg.split('||')
    #                         for label in b_label:
    #                             t_s_b = True
    #                             # spit label with &&
    #                             atomic_label = label.split('&&')
    #                             for a in atomic_label:
    #                                 a = a.strip()
    #                                 a = a.strip('(')
    #                                 a = a.strip(')')
    #                                 if a == '1':
    #                                     continue
    #                                 # whether ! in an atomic proposition
    #                                 if '!' in a:
    #                                     if a[1:] in x_label:
    #                                         t_s_b = False
    #                                         break
    #                                 else:
    #                                     if not a in x_label:
    #                                         t_s_b = False
    #                                         break
    #                             # either one of || holds
    #                             if t_s_b:
    #                                 return t_s_b
    #                 except nx.exception.NetworkXNoPath:
    #                     c = np.inf
    #             else:
    #                 c = 0
    #             min_qb_dict[(node1, node2)] = c
    #
    #     return min_qb_dict

    def FeasAcpt(self, min_qb):
        """
        delte infeasible final state
        :param buchi_graph: buchi automaton
        :param min_qb: dict of pairs of node : length of path
        """
        accept = self.buchi_graph.graph['accept']
        for acpt in accept:
            if min_qb[(self.buchi_graph.graph['init'][0], acpt)] == np.inf or min_qb[(acpt, acpt)] == np.inf:
                self.buchi_graph.graph['accept'].remove(acpt)

    def PutNotInside(self, str):
        """
        put not inside the parenthesis !(p1 && p2) -> !p1 or !p2
        :param str: old
        :return: new
        """
        substr = re.findall("(!\(.*?\))", str)  # ['!(p1 && p2)', '!(p4 && p5)']
        for s in substr:
            oldstr = s.strip().strip('!').strip('(').strip(')')
            nstr = ''
            for ss in oldstr.split():
                if '&&' in ss:
                    nstr = nstr + ' or '
                elif 'or' in ss:
                    nstr = nstr + ' && '
                else:
                    nstr = nstr + '!' + ss
            str = str.replace(s, nstr)
        return str

    def label2sat(self):
        for edge in self.buchi_graph.edges():
            label = self.buchi_graph.edges[edge]['label']
            label = label.replace('||', '|').replace('&&', '&').replace('!', '~')
            exp1 = to_cnf(label)
            self.buchi_graph.edges[edge]['label'] = exp1
Esempio n. 6
0
class BiasedTree(object):
    """
    biased tree for prefix and suffix parts
    """
    def __init__(self, workspace, geodesic, buchi, task, init_state,
                 init_label, init_angle, segment, para):
        """
        initialization of the tree
        :param workspace: workspace
        :param buchi: buchi automaton
        :param init_state: initial location of the robots
        :param init_label: label generated by the initial location
        :param segment: prefix or suffix part
        :param para: parameters regarding biased-sampling method
        """
        # parameters regarding workspace
        self.workspace_instance = workspace

        self.workspace = workspace.workspace
        self.dim = len(self.workspace)
        # self.regions = workspace.regions
        self.obstacles = workspace.obs

        self.node_landmark = Landmark()
        self.node_landmark.update_from_workspace(workspace)

        self.geodesic = geodesic

        self.robot = buchi.number_of_robots
        # parameters regarding task
        self.buchi = buchi
        self.task = task
        self.accept = self.buchi.buchi_graph.graph['accept']
        self.init = init_state

        # initlizing the tree
        self.biased_tree = DiGraph(type='PBA', init=self.init)
        self.biased_tree.add_node(self.init, cost=0, label=init_label, \
                                  angle=init_angle, lm=self.node_landmark, \
                                      node_id=0)
        self.node_count = 1
        # parameters regarding TL-RRT* algorithm
        self.goals = []
        self.step_size = para['step_size']
        self.segment = segment
        self.lite = para['is_lite']
        # size of the ball used in function near
        uni_v = np.power(np.pi, self.robot * self.dim /
                         2) / math.gamma(self.robot * self.dim / 2 + 1)
        self.gamma = np.ceil(
            4 * np.power(1 / uni_v, 1. /
                         (self.dim * self.robot)))  # unit workspace
        # parameters regarding biased sampling
        # group the nodes in the tree by the buchi state
        self.group = dict()
        self.add_group(self.init)

        # select final buchi states
        if self.segment == 'prefix':
            self.b_final = self.buchi.buchi_graph.graph['accept'][0]
        else:
            self.b_final = self.buchi.buchi_graph.graph['accept']
        self.min_dis = np.inf
        self.q_min2final = []
        self.not_q_min2final = []
        self.update_min_dis2final_and_partition(self.init)

        # probability of selecting q_p_closest
        self.p_closest = para['p_closest']
        # weight when selecting x_rand
        self.y_rand = para['y_rand']
        # threshold for collision avoidance
        self.threshold = para['threshold']
        # Updates landmark covariance when inside sensor range
        self.update_covariance = para['update_covariance']
        # sensor range in meters
        self.sensor_range = para['sensor_range']
        # sensor measurement noise
        self.sensor_R = para['sensor_R']

        # polygon obstacle for visibility-based method
        polys = []
        for poly in self.obstacles.values():
            polys.append([
                vg.Point(x[0], x[1]) for x in list(poly.exterior.coords)[:-1]
            ])
        self.g = vg.VisGraph()
        self.g.build(polys, status=False)

    def trunc(self, i, value):
        """
        limit the robot in the range of workspace
        :param i: robot i, starting from 0
        :param value: value to be adjusted
        :return: adjusted value
        """
        if value < 0:
            return 0
        elif value > self.workspace[i]:
            return self.workspace[i]
        else:
            return value

    def biased_sample(self):
        """
        buchi guided biased sample
        :return: sampled point x_rand, angles of robots, closest node 
                    q_p_closest in terms of transitions, label of x_rand
                    
        """
        # sample nodes as q_p_closest from two partitioned sets
        p_rand = np.random.uniform(0, 1, 1)
        q_p_closest = None
        if (p_rand <= self.p_closest
                and len(self.q_min2final) > 0) or not self.not_q_min2final:
            q_p_closest = sample_uniform_geometry(self.q_min2final)
        elif p_rand > self.p_closest or not self.q_min2final:
            q_p_closest = sample_uniform_geometry(self.not_q_min2final)

        # find the reachable sets of buchi state of q_p_closest
        reachable_q_b_closest = []
        for b_state in self.buchi.buchi_graph.succ[q_p_closest[1]]:
            if self.check_transition_b_helper(
                    self.biased_tree.nodes[q_p_closest]['label'],
                    self.buchi.buchi_graph.edges[(q_p_closest[1],
                                                  b_state)]['truth'],
                    self.buchi.buchi_graph.edges[(q_p_closest[1],
                                                  b_state)]['AP_keys']):
                reachable_q_b_closest.append(b_state)
        # if reachable_q_b_closest is empty
        if not reachable_q_b_closest:
            return [], [], [], [], []

        # collect the buchi states in the reachable set of q_p_closest with minimum distance to the final state
        b_min_from_q_b_closest = self.get_min2final_from_subset(
            reachable_q_b_closest)

        # collect the buchi states in the reachable set b_min_from_q_b_closest whose successors is 1 step less from
        # the final state than the it is
        reachable_decr = dict()
        m_q_b_closest = []
        for b_state in b_min_from_q_b_closest:
            candidate = []
            for succ in self.buchi.buchi_graph.succ[b_state]:
                if self.buchi.min_length[(b_state, self.b_final)] - 1 == self.buchi.min_length[(succ, self.b_final)] \
                        or succ in self.buchi.buchi_graph.graph['accept']:
                    candidate.append(succ)
            if candidate:
                reachable_decr[b_state] = candidate
                m_q_b_closest.append(b_state)
        # if empty
        if not m_q_b_closest:
            return [], [], [], [], []
        # sample q_b_min and q_b_decr
        q_b_min = sample_uniform_geometry(m_q_b_closest)
        q_b_decr = sample_uniform_geometry(reachable_decr[q_b_min])
        # get the guarding symbol
        truth = self.buchi.buchi_graph.edges[(q_b_min, q_b_decr)]['truth']
        AP_truth = self.buchi.buchi_graph.edges[(q_b_min, q_b_decr)]['AP_keys']
        avoid_targets = self.buchi.buchi_graph.edges[(q_b_min,
                                                      q_b_decr)]['avoid']
        avoid_targets_2 = self.buchi.buchi_graph.edges[(
            q_b_min, q_b_decr)]['avoid_self_loop']
        x_rand = list(q_p_closest[0])
        x_angle = self.biased_tree.nodes[q_p_closest]['angle'].copy()
        """get landmark state from q_p_closest and pass to below function"""
        self.node_landmark = Landmark()
        # self.node_landmark.update_from_landmark(self.biased_tree.nodes[q_p_closest]['lm'])
        self.node_landmark = deepcopy(
            self.biased_tree.nodes[q_p_closest]['lm'])
        return self.buchi_guided_sample_by_truthvalue(
            truth, AP_truth, avoid_targets, avoid_targets_2, x_rand,
            q_p_closest, self.biased_tree.nodes[q_p_closest]['label'], x_angle,
            q_b_decr)

    def buchi_guided_sample_by_truthvalue(self, truth, AP_truth, avoid_targets,
                                          avoid_targets_2, x_rand, q_p_closest,
                                          x_label, x_angle, target_b_state):
        """
        sample a point moving towards the region corresponding to the guarding symbol
        :param truth: guarding symbol that enables the transition
        :param q_p_closest: the node q_p_closest
        :param x_rand: point to be sampled
        :param x_label: label of position of q_p_closest
        :return: sampled point x_rand, q_p_closest
        """
        # x_angle = self.biased_tree.nodes[q_p_closest]['angle']

        if truth == '1':
            label = self.task.get_label_landmark(q_p_closest[0],
                                                 self.node_landmark)
            return q_p_closest[0], x_angle, q_p_closest, label, target_b_state
        else:
            for key in truth:
                # move towards the target position
                found = False
                for AP_key in x_label.keys():
                    if key in x_label[AP_key] and str(AP_key) in AP_truth:
                        found = True
                if truth[key] and found == False:
                    pair = key.split('_')  # region-robot pair
                    robot_index = int(pair[1]) - 1
                    orig_x_rand = x_rand[
                        robot_index]  # save for further recover
                    orig_angle = x_angle[robot_index]
                    count = 0
                    while True:
                        x_rand[robot_index] = orig_x_rand  # recover
                        count += 1
                        """ check distance with landmark and take random only if in sensor range"""
                        distance_from_lm = self.dist_from_landmark(
                            orig_x_rand, pair[0])
                        target, lm_pos = self.get_target(
                            orig_x_rand, pair[0], avoid_targets[robot_index],
                            avoid_targets_2[robot_index])

                        if distance_from_lm > self.sensor_range:
                            if np.random.uniform(
                                    0, 1, 1) <= self.y_rand and count < 500:
                                x_rand[robot_index], x_angle[
                                    robot_index] = self.sample_control_to_target(
                                        orig_x_rand, orig_angle, target,
                                        lm_pos)
                                for lm_key in self.node_landmark.landmark.keys(
                                ):
                                    if self.dist_from_landmark(
                                            x_rand[robot_index], lm_key
                                    ) < self.sensor_range and self.update_covariance:
                                        self.node_landmark.landmark[lm_key][
                                            1] = ekf_update(
                                                self.node_landmark.
                                                landmark[lm_key][1], lm_pos,
                                                x_rand[robot_index],
                                                self.sensor_R)
                                        self.node_landmark.generate_samples_for_lm(
                                            lm_key)
                            else:
                                x_rand[robot_index], x_angle[
                                    robot_index] = self.sample_control_random(
                                        orig_x_rand, orig_angle)
                                for lm_key in self.node_landmark.landmark.keys(
                                ):
                                    if self.dist_from_landmark(
                                            x_rand[robot_index], lm_key
                                    ) < self.sensor_range and self.update_covariance:
                                        self.node_landmark.landmark[lm_key][
                                            1] = ekf_update(
                                                self.node_landmark.
                                                landmark[lm_key][1], lm_pos,
                                                x_rand[robot_index],
                                                self.sensor_R)
                                        self.node_landmark.generate_samples_for_lm(
                                            lm_key)
                        else:
                            if np.random.uniform(0, 1, 1) <= 0.7:
                                x_rand[robot_index], x_angle[
                                    robot_index] = self.sample_control_to_target(
                                        orig_x_rand, orig_angle, target,
                                        lm_pos)
                                for lm_key in self.node_landmark.landmark.keys(
                                ):
                                    if self.dist_from_landmark(
                                            x_rand[robot_index], lm_key
                                    ) < self.sensor_range and self.update_covariance:
                                        self.node_landmark.landmark[lm_key][
                                            1] = ekf_update(
                                                self.node_landmark.
                                                landmark[lm_key][1], lm_pos,
                                                x_rand[robot_index],
                                                self.sensor_R)
                                        self.node_landmark.generate_samples_for_lm(
                                            lm_key)
                            else:
                                x_rand[robot_index], x_angle[
                                    robot_index] = self.sample_control_random(
                                        orig_x_rand, orig_angle)
                                for lm_key in self.node_landmark.landmark.keys(
                                ):
                                    if self.dist_from_landmark(
                                            x_rand[robot_index], lm_key
                                    ) < self.sensor_range and self.update_covariance:
                                        self.node_landmark.landmark[lm_key][
                                            1] = ekf_update(
                                                self.node_landmark.
                                                landmark[lm_key][1], lm_pos,
                                                x_rand[robot_index],
                                                self.sensor_R)
                                        self.node_landmark.generate_samples_for_lm(
                                            lm_key)

                        # sampled point lies within obstacles
                        if 'o' in self.get_label(x_rand[robot_index]): continue
                        # collision avoidance
                        if self.collision_avoidance(x_rand, robot_index): break
        label = self.task.get_label_landmark(x_rand, self.node_landmark)

        return tuple(x_rand), x_angle, q_p_closest, label, target_b_state

    def add_group(self, q_p):
        """
        add q_p to the group within which all states have the same buchi state
        :param q_p: a product state
        """
        try:
            self.group[q_p[1]].append(q_p)
        except KeyError:
            self.group[q_p[1]] = [q_p]

    def get_min2final_from_subset(self, subset):
        """
        collect the buchi state from the subset of nodes with minimum distance to the final state
        :param subset: set of nodes
        :return: list of buchi states with minimum distance to the final state
        """
        l_min = np.inf
        b_min = set()
        for b_state in subset:
            if self.buchi.min_length[(b_state, self.b_final)] < l_min:
                l_min = self.buchi.min_length[(b_state, self.b_final)]
                b_min = set([b_state])
            elif self.buchi.min_length[(b_state, self.b_final)] == l_min:
                b_min.add(b_state)
        return b_min

    def update_min_dis2final_and_partition(self, q_p_new):
        """
         check whether q_p_new has the buchi component with minimum distance to the final state
         if so, update the set b_min which collects the buchi states with minimum distance to the final state
         and the set q_min2final which collects nodes in the tree with buchi states in b_min
        :param q_p_new: new product state
        """
        # smaller than the current nodes with minimum distance
        if self.buchi.min_length[(q_p_new[1], self.b_final)] < self.min_dis:
            self.min_dis = self.buchi.min_length[(q_p_new[1], self.b_final)]
            self.not_q_min2final = self.not_q_min2final + self.q_min2final
            self.q_min2final = [q_p_new]
        # equivalent to
        elif self.buchi.min_length[(q_p_new[1], self.b_final)] == self.min_dis:
            self.q_min2final = self.q_min2final + [q_p_new]
        # larger than
        else:
            self.not_q_min2final = self.not_q_min2final + [q_p_new]

    def get_target(self, init, target, avoid_targets, avoid_targets_2):
        """
        find the second vertex in the shortest path from initial point to the target region
        :param init: initial point
        :param target: target labeled region
        :return: the second vertex
        """
        if target[0] == 'c':
            landmark_id = np.argmax(
                self.workspace_instance.classes[:, (int(target[1:]) - 1)]) + 1
            target = 'l' + str(landmark_id)
        tg = self.node_landmark.landmark[target][0]
        # shortest = self.g.shortest_path(vg.Point(init[0], init[1]), vg.Point(tg[0], tg[1]))
        # start = datetime.datetime.now()
        avoid = avoid_targets.copy()
        for i in range(len(avoid_targets_2)):
            avoid.append(avoid_targets_2[i])
        waypoint = self.geodesic.get_geodesic_target(init, tg,
                                                     self.node_landmark, avoid)
        # print(go_to)
        # NBA_time = (datetime.datetime.now() - start).total_seconds()
        # print('Time for getting path: {0:.4f} s'.format(NBA_time))
        return waypoint, tg
        # return shortest[1].x, shortest[1].y

    def get_truncated_normal(self, mean=0, sd=1, low=0, upp=10):
        """
        truncated normal distribution
        :param mean: mean value
        :param sd: standard deviation
        :param low: lower bound of the random variable
        :param upp: upper bound of the random variable
        :return: value of the random variable
        """
        return truncnorm((low - mean) / sd, (upp - mean) / sd,
                         loc=mean,
                         scale=sd)

    # def gaussian_guided_towards_target(self, x, target):
    #     """
    #     calculate new point x_rand guided by the target
    #     distance and angle follow the gaussian distribution
    #     :param x: initial point
    #     :param target: target point
    #     :return: new point x_rand
    #     """
    #     d = 0.3
    #     angle = np.random.normal(0, np.pi/12/3/3, 1) + np.arctan2(target[1] - x[1], target[0] - x[0])
    #     x_rand = np.add(x, np.append(d * np.cos(angle), d * np.sin(angle)))
    #     x_rand = [self.trunc(i, x_rand_i) for i, x_rand_i in enumerate(x_rand)]
    #     return tuple(x_rand)

    def sample_control_to_target(self, x, orig_angle, target, lm_pos):
        """
        calculate new point x_rand guided by the target
        distance and angle follow the gaussian distribution
        :param x: initial point
        :param target: target point
        :return: new point x_rand
        """
        if x == target:
            return x, orig_angle
        """Continuous dynamics"""
        # d = 4
        # angle = np.random.normal(0, np.pi/12/3/3, 1) + np.arctan2(target[1] - x[1], target[0] - x[0])
        # # angle = 0.4*orig_angle + 0.6*angle
        # diff = angle-orig_angle
        # if diff>np.pi:
        #     diff = diff - 2*np.pi
        # elif diff<-np.pi:
        #     diff = 2*np.pi + diff

        # angle = orig_angle + 0.4*diff

        # if angle>np.pi:
        #     angle = angle - 2*np.pi
        # elif angle <-np.pi:
        #     angle = 2*np.pi + angle

        # x_rand = np.add(x, np.append(d * np.cos(angle), d * np.sin(angle)))
        # x_rand = [self.trunc(i, x_rand_i) for i, x_rand_i in enumerate(x_rand)]
        """discrete dynamics"""
        tau = 0.5
        if math.sqrt((lm_pos[1] - x[1])**2 + (lm_pos[0] - x[0])**2) < 10:
            dd = 3
        else:
            dd = 10
        d = dd * tau
        angle = np.arctan2(target[1] - x[1], target[0] -
                           x[0])  # + np.random.normal(0, np.pi/12/3/3, 1)

        x_rand = np.add(x, np.append(d * np.cos(angle), d * np.sin(angle)))
        x_rand = [self.trunc(i, x_rand_i) for i, x_rand_i in enumerate(x_rand)]
        """Brent dynamics"""
        # d=5
        # dd=5
        # curTheta=orig_angle
        # u = np.array([0,45,-45,90,-90,135,-135,180,-180])*np.pi/180
        # uu = u + orig_angle
        # uu[uu>np.pi] = uu[uu>np.pi] - 2*np.pi
        # uu[uu<-np.pi] = uu[uu<-np.pi] + 2*np.pi
        # angle =  np.arctan2(target[1] - x[1], target[0] - x[0])
        # index = np.where(abs((uu-angle))==min(abs(uu-angle)))
        # uuu=u[index[0][0]]
        # if abs(tau*uuu)<0.001:
        #     x_rand = np.add(x,np.append(d*np.cos(curTheta+tau*uuu/2),d*np.sin(curTheta+tau*uuu/2)))
        #     x_rand = [self.trunc(i, x_rand_i) for i, x_rand_i in enumerate(x_rand)]
        # else:
        #     x_rand = np.add(x, np.append((dd/uuu)*(np.sin(curTheta+tau*uuu) - np.sin(curTheta)), (dd/uuu)*(np.cos(curTheta) - np.cos(curTheta+tau*uuu))))
        #     x_rand = [self.trunc(i, x_rand_i) for i, x_rand_i in enumerate(x_rand)]

        return tuple(x_rand), angle

    def sample_control_random(self, x, orig_angle):
        """
        calculate new point x_rand guided by the target
        distance and angle follow the gaussian distribution
        :param x: initial point
        :param target: target point
        :return: new point x_rand
        """
        tau = 0.5
        dd = 5
        d = dd * tau
        # angle = np.random.uniform(-np.pi, np.pi)
        u = np.array([0, 45, -45, 90, -90, 135, -135, 180, -180
                      ]) * tau * np.pi / 180
        angle = np.random.choice(u) + orig_angle
        x_rand = np.add(x, np.append(d * np.cos(angle), d * np.sin(angle)))
        x_rand = [self.trunc(i, x_rand_i) for i, x_rand_i in enumerate(x_rand)]
        return tuple(x_rand), angle

    def collision_avoidance(self, x, robot_index):
        """
        check whether robots with smaller index than robot_index collide with the robot of index robot_index
        :param x: position of robots
        :param robot_index: index of the specific robot
        :return: true if collision free
        """
        for i in range(len(x)):
            if i != robot_index:
                if np.fabs(x[i][0] - x[robot_index][0]) <= self.threshold and \
                            np.fabs(x[i][1] - x[robot_index][1]) <= self.threshold:
                    return False
        return True

    def nearest(self, x_rand):
        """
        find the nearest class of vertices in the tree
        :param: x_rand randomly sampled point form: single point ()
        :return: nearest class of vertices form: single point ()
        """
        min_dis = math.inf
        q_p_nearest = []
        for node in self.biased_tree.nodes:
            x = self.mulp2single(node[0])
            dis = np.linalg.norm(np.subtract(x_rand, x))
            if dis < min_dis:
                q_p_nearest = [node]
                min_dis = dis
            elif dis == min_dis:
                q_p_nearest.append(node)
        return q_p_nearest

    def steer(self, x_rand, x_nearest):
        """
        steer
        :param: x_rand randomly sampled point form: single point ()
        :param: x_nearest nearest point in the tree form: single point ()
        :return: new point single point ()
        """
        if np.linalg.norm(np.subtract(x_rand, x_nearest)) <= self.step_size:
            return x_rand
        else:
            return tuple(
                np.asarray(x_nearest) + self.step_size *
                (np.subtract(x_rand, x_nearest)) /
                np.linalg.norm(np.subtract(x_rand, x_nearest)))

    def extend(self, q_new, x_angle, near_nodes, label, obs_check,
               target_b_state):
        """
        add the new sate q_new to the tree
        :param: q_new: new state
        :param: near_nodes: near state
        :param: obs_check: check the line connecting two points are inside the freespace
        :return: the tree after extension
        """
        added = False
        cost = np.inf
        q_min = ()
        # loop over all nodes in near_nodes
        for node in near_nodes:
            # if q_new != node and obs_check[(q_new[0], node[0])] and \
            #         self.check_transition_b(node[1], self.biased_tree.nodes[node]['label'], q_new[1]):
            if q_new != node and obs_check[(q_new[0], node[0])] and \
                    self.check_transition_b(node[1], label, q_new[1]):
                c = self.biased_tree.nodes[node]['cost'] \
                    + np.linalg.norm(np.subtract(self.mulp2single(q_new[0]), self.mulp2single(node[0])))
                if c < cost:
                    added = True
                    q_min = node
                    cost = c
        if added and not self.biased_tree.has_node(q_new):
            self.biased_tree.add_node(q_new,
                                      cost=cost,
                                      label=label,
                                      angle=x_angle,
                                      lm=self.node_landmark,
                                      node_id=self.node_count,
                                      target=target_b_state)
            self.node_count += 1
            self.biased_tree.add_edge(q_min, q_new)
            self.add_group(q_new)
            self.update_min_dis2final_and_partition(q_new)
            if self.segment == 'prefix' and q_new[1] in self.accept:
                # q_n = list(list(self.biased_tree.pred[q_new].keys())[0])
                # cost = self.biased_tree.nodes[tuple(q_n)]['cost']
                # label = self.biased_tree.nodes[tuple(q_n)]['label']
                # q_n[1] = q_new[1]
                # q_n = tuple(q_n)
                # self.biased_tree.add_node(q_n, cost=cost, label=label)
                # self.biased_tree.add_edge(q_min, q_n)
                # self.add_group(q_n)
                # self.update_min_dis2final_and_partition(q_n)
                # self.goals.append(q_n)
                self.goals.append(q_new)
            if self.segment == 'suffix' and self.init[1] == q_new[1]:
                self.goals.append(q_new)
        return added

    def rewire(self, q_new, near_nodes, obs_check):
        """
        :param: q_new: new state
        :param: near_nodes: states returned near
        :param: obs_check: check whether obstacle-free
        :return: the tree after rewiring
        """
        for node in near_nodes:
            if obs_check[(q_new[0], node[0])] \
                    and self.check_transition_b(q_new[1], self.biased_tree.nodes[q_new]['label'], node[1]):
                c = self.biased_tree.nodes[q_new]['cost'] \
                    + np.linalg.norm(np.subtract(self.mulp2single(q_new[0]), self.mulp2single(node[0])))
                delta_c = self.biased_tree.nodes[node]['cost'] - c
                # update the cost of node in the subtree rooted at the rewired node
                if delta_c > 0:
                    self.biased_tree.remove_edge(
                        list(self.biased_tree.pred[node].keys())[0], node)
                    self.biased_tree.add_edge(q_new, node)
                    edges = dfs_labeled_edges(self.biased_tree, source=node)
                    for _, v, d in edges:
                        if d == 'forward':
                            self.biased_tree.nodes[v][
                                'cost'] = self.biased_tree.nodes[v][
                                    'cost'] - delta_c

    def near(self, x_new):
        """
        find the states in the near ball
        :param x_new: new point form: single point
        :return: p_near: near state, form: tuple (mulp, buchi)
        """
        near_nodes = []
        radius = min(
            self.gamma * np.power(
                np.log(self.biased_tree.number_of_nodes() + 1) /
                self.biased_tree.number_of_nodes(), 1. /
                (self.dim * self.robot)), self.step_size)
        for node in self.biased_tree.nodes:
            if np.linalg.norm(np.subtract(x_new, self.mulp2single(
                    node[0]))) <= radius:
                near_nodes.append(node)
        return near_nodes

    def obstacle_check(self, near_node, x_new, label):
        """
        check whether line from x_near to x_new is obstacle-free
        :param near_node: nodes returned by near function
        :param x_new: new position component
        :param label: label of x_new
        :return: a dictionary indicating whether the line connecting two points are obstacle-free
        """

        obs_check = {}
        checked = set()

        for node in near_node:
            # whether the position component of nodes has been checked
            if node[0] in checked:
                continue
            checked.add(node[0])
            obs_check[(x_new, node[0])] = True
            flag = True  # indicate whether break and jump to outer loop
            for r in range(self.robot):
                # the line connecting two points crosses an obstacle
                for (obs, boundary) in iter(self.obstacles.items()):
                    if LineString([Point(node[0][r]),
                                   Point(x_new[r])]).intersects(boundary):
                        obs_check[(x_new, node[0])] = False
                        flag = False
                        break
                # no need to check further
                if not flag:
                    break

        return obs_check

    def get_label(self, x):
        """
        generating the label of position component
        :param x: position
        :return: label
        """
        point = Point(x)
        # whether x lies within obstacle
        for (obs, boundary) in iter(self.obstacles.items()):
            if point.within(boundary):
                return obs

        return ''

    def check_transition_b(self, q_b, x_label, q_b_new):
        """
        check whether q_b -- x_label ---> q_b_new
        :param q_b: buchi state
        :param x_label: label of x
        :param q_b_new: buchi state
        :return True if satisfied
        """
        b_state_succ = self.buchi.buchi_graph.succ[q_b]
        # q_b_new is not the successor of b_state
        if q_b_new not in b_state_succ:
            return False
        # check whether label of x enables the transition
        truth = self.buchi.buchi_graph.edges[(q_b, q_b_new)]['truth']
        AP_truth = self.buchi.buchi_graph.edges[(q_b, q_b_new)]['AP_keys']
        if self.check_transition_b_helper(x_label, truth, AP_truth):
            return True

        return False

    def check_transition_b_helper(self, x_label, truth, AP_truth):
        """
        check whether transition enabled with current generated label
        :param x_label: label of the current position
        :param truth: symbol enabling the transition
        :return: true or false
        """
        if truth == '1':
            return True
        # all true propositions should be satisdied
        true_label = [
            true_label for true_label in truth.keys() if truth[true_label]
        ]
        for label in true_label:
            found = False
            for key in x_label.keys():
                if label in x_label[key] and str(key) in AP_truth:
                    found = True
            if found == False:
                return False

        #  all fasle propositions should not be satisfied
        false_label = [
            false_label for false_label in truth.keys()
            if not truth[false_label]
        ]
        for label in false_label:
            found = False
            for key in x_label.keys():
                if label in x_label[key]:
                    found = True
            if found == True:
                return False

        return True

    def find_path(self, goals):
        """
        find the path backwards
        :param goals: found all goal states
        :return: the path leading to the goal state and the corresponding cost
        """
        paths = OrderedDict()
        nodes = []
        cov = []
        targets = []
        for i in range(len(goals)):
            goal = goals[i]
            path = [goal]
            s = goal
            nodes.insert(0, self.biased_tree.nodes[s]['node_id'])
            cov.insert(0, self.biased_tree.nodes[s]['lm'])
            targets.insert(0, self.biased_tree.nodes[s]['target'])
            targets.insert(0, self.biased_tree.nodes[s]['target'])
            # print(self.biased_tree.nodes[s]['node_id'])
            while s != self.init:
                s = list(self.biased_tree.pred[s].keys())[0]
                path.insert(0, s)

                nodes.insert(0, self.biased_tree.nodes[s]['node_id'])
                cov.insert(0, self.biased_tree.nodes[s]['lm'])
                # if s==self.init:
                #     targets.insert(0,targets[0])
                # else:
                if s != self.init:
                    targets.insert(0, self.biased_tree.nodes[s]['target'])

            paths[i] = [self.biased_tree.nodes[goal]['cost'], path]
        return paths, nodes, cov, targets

    def mulp2single(self, point):
        """
        convert a point, which in the form of a tuple of tuple ((),(),(),...) to point in the form of a flat tuple
        :param point: point((position of robot 1), (position of robot2), (), ...)
        :return: point (position of robot1, position of robot2, ...)
        """
        return tuple([p for r in point for p in r])

    def single2mulp(self, point):
        """
        convert a point in the form of flat tuple to point in the form of a tuple of tuple ((),(),(),...)
        :param point: point (position of robot1, position of robot2, ...)
        :return:  point((position of robot 1), (position of robot2), (), ...)
        """
        mp = [
            point[i * self.dim:(i + 1) * self.dim] for i in range(self.robot)
        ]
        return tuple(mp)

    def dist_from_landmark(self, x, lm_id):
        """
        Parameters
        ----------
        x : robot position
        lm_id : landmark id (eg. l6)

        Returns
        -------
        Distance between landmark and robot

        """
        lm_pos = self.node_landmark.landmark[lm_id][0]
        return math.sqrt((x[0] - lm_pos[0])**2 + (x[1] - lm_pos[1])**2)
Esempio n. 7
0
class tree(object):
    """ construction of prefix and suffix tree
    """
    def __init__(self, ts, buchi_graph, init, base=1e3, seg='pre'):
        """
        :param ts: transition system
        :param buchi_graph:  Buchi graph
        :param init: product initial state
        """
        self.robot = 1
        self.goals = []
        self.ts = ts
        self.buchi_graph = buchi_graph
        self.init = init
        self.dim = len(self.ts['workspace'])
        self.tree = DiGraph(type='PBA', init=init)
        label = self.label(init[0])
        if label != '':
            label = label + '_' + str(1)
        # accepting state before current node
        acc = set()
        if 'accept' in init[1]:
            acc.add(init)
        self.tree.add_node(init, cost=0, label=label, acc=acc)

        # already used skilles
        self.used = set()
        self.base = base
        self.seg = seg
        self.found = 10

    def sample(self, num):
        """
        sample point from the workspace
        :return: sampled point, tuple
        """
        q_rand = list(self.tree.nodes())[np.random.randint(
            self.tree.number_of_nodes(), size=1)[0]]
        x_rand = [0, 0]
        # parallel to one axis
        line = np.random.randint(2, size=1)[0]
        x_rand[line] = q_rand[0][line]
        # sample another component
        r = round(1 / num, 10)
        # x_rand[1-line] = int(np.random.uniform(0, 1, size=1)[0]/r) * r + r/2
        x_rand[1 - line] = round(
            np.random.randint(num, size=1)[0] * r + r / 2, 10)
        return tuple(x_rand)

    def acpt_check(self, q_min, q_new):
        """
        check the accepting state in the patg leading to q_new
        :param q_min:
        :param q_new:
        :return:
        """
        changed = False
        acc = set(self.tree.nodes[q_min]['acc'])  # copy
        if 'accept' in q_new[1]:
            acc.add(q_new)
            # print(acc)
            changed = True
        return acc, changed

    def extend(self, q_new, prec_list, succ_list, label_new):
        """
        :param: q_new: new state form: tuple (mulp, buchi)
        :param: near_v: near state form: tuple (mulp, buchi)
        :param: obs_check: check obstacle free  form: dict { (mulp, mulp): True }
        :param: succ: list of successor of the root
        :return: extending the tree
        """

        added = 0
        cost = np.inf
        q_min = ()
        for pre in prec_list:
            if pre in succ_list:  # do not extend if there is a corresponding root
                continue
            c = self.tree.nodes[pre]['cost'] + np.abs(
                q_new[0][0] - pre[0][0]) + np.abs(q_new[0][1] - pre[0][1])
            if c < cost:
                added = 1
                q_min = pre
                cost = c
        if added == 1:
            self.tree.add_node(q_new, cost=cost, label=label_new)
            self.tree.nodes[q_new]['acc'] = set(
                self.acpt_check(q_min, q_new)[0])
            self.tree.add_edge(q_min, q_new)
        return added

    def rewire(self, q_new, succ_list):
        """
        :param: q_new: new state form: tuple (mul, buchi)
        :param: near_v: near state form: tuple (mul, buchi)
        :param: obs_check: check obstacle free form: dict { (mulp, mulp): True }
        :return: rewiring the tree
        """
        for suc in succ_list:
            # root
            if suc == self.init:
                continue
            c = self.tree.nodes[q_new]['cost'] + np.abs(
                q_new[0][0] - suc[0][0]) + np.abs(q_new[0][1] - suc[0][1])
            delta_c = self.tree.nodes[suc]['cost'] - c
            # update the cost of node in the subtree rooted at near_vertex
            if delta_c > 0:
                self.tree.remove_edge(list(self.tree.pred[suc].keys())[0], suc)
                self.tree.add_edge(q_new, suc)
                edges = dfs_labeled_edges(self.tree, source=suc)
                acc, changed = self.acpt_check(q_new, suc)
                self.tree.nodes[suc]['acc'] = set(acc)
                for u, v, d in edges:
                    if d == 'forward':
                        self.tree.nodes[v][
                            'cost'] = self.tree.nodes[v]['cost'] - delta_c
                        if changed:
                            self.tree.nodes[v]['acc'] = set(
                                self.acpt_check(u, v)[0])  # copy
        # better to research the goal but abandon the implementation

    def prec(self, q_new, label_new, obs_check):
        """
        find the predcessor of q_new
        :param q_new: new product state
        :return: label_new: label of new
        """
        p_prec = []
        for vertex in self.tree.nodes:
            if q_new != vertex and self.obs_check(vertex, q_new[0], label_new, obs_check) \
                    and self.checkTranB(vertex[1], self.tree.nodes[vertex]['label'], q_new[1]):
                p_prec.append(vertex)
        return p_prec

    def succ(self, q_new, label_new, obs_check):
        """
        find the successor of q_new
        :param q_new: new product state
        :return: label_new: label of new
        """
        p_succ = []
        for vertex in self.tree.nodes:
            if q_new != vertex and self.obs_check(vertex, q_new[0], label_new, obs_check) \
                    and self.checkTranB(q_new[1], self.tree.nodes[q_new]['label'], vertex[1]):
                p_succ.append(vertex)
        return p_succ

    def obs_check(self, q_tree, x_new, label_new, obs_check):
        """
        check whether obstacle free along the line from q_tree to x_new
        :param q_tree: vertex in the tree
        :param x_new:
        :param label_new:
        :return: true or false
        """

        if q_tree[0][0] != x_new[0] and q_tree[0][1] != x_new[1]:
            return False

        if (q_tree[0], x_new) in obs_check.keys():
            return obs_check[(q_tree[0], x_new)]

        if (x_new, q_tree[0]) in obs_check.keys():
            return obs_check[(x_new, q_tree[0])]

        # the line connecting two points crosses an obstacle
        for (obs, boundary) in iter(self.ts['obs'].items()):
            if LineString([Point(q_tree[0]),
                           Point(x_new)]).intersects(boundary):
                obs_check[(q_tree[0], x_new)] = False
                obs_check[(x_new, q_tree[0])] = False
                return False

        for (region, boundary) in iter(self.ts['region'].items()):
            if LineString([Point(q_tree[0]), Point(x_new)]).intersects(boundary) \
                    and region + '_' + str(1) != label_new \
                    and region + '_' + str(1) != self.tree.nodes[q_tree]['label']:
                obs_check[(q_tree[0], x_new)] = False
                obs_check[(x_new, q_tree[0])] = False
                return False

        obs_check[(q_tree[0], x_new)] = True
        obs_check[(x_new, q_tree[0])] = True
        return True

    def label(self, x):
        """
        generating the label of position state
        :param x: position
        :return: label
        """

        point = Point(x)
        # whether x lies within obstacle
        for (obs, boundary) in iter(self.ts['obs'].items()):
            if point.within(boundary):
                return obs

        # whether x lies within regions
        for (region, boundary) in iter(self.ts['region'].items()):
            if point.within(boundary):
                return region
        # x lies within unlabeled region
        return ''

    def checkTranB(self, b_state, x_label, q_b_new):
        """ decide valid transition, whether b_state --L(x)---> q_b_new
             :param b_state: buchi state
             :param x_label: label of x
             :param q_b_new buchi state
             :return True satisfied
        """
        b_state_succ = self.buchi_graph.succ[b_state]
        # q_b_new is not the successor of b_state
        if q_b_new not in b_state_succ:
            return False

        truth = self.buchi_graph.edges[(b_state, q_b_new)]['truth']
        if self.t_satisfy_b_truth(x_label, truth):
            return True

        return False

    def t_satisfy_b_truth(self, x_label, truth):
        """
        check whether transition enabled under current label
        :param x_label: current label
        :param truth: truth value making transition enabled
        :return: true or false
        """
        if truth == '1':
            return True

        true_label = [
            truelabel for truelabel in truth.keys() if truth[truelabel]
        ]
        for label in true_label:
            if label not in x_label:
                return False

        false_label = [
            falselabel for falselabel in truth.keys() if not truth[falselabel]
        ]
        for label in false_label:
            if label in x_label:
                return False

        return True

    def findpath(self, goals):
        """
        find the path backwards
        :param goals: goal state
        :return: dict path : cost
        """
        paths = OrderedDict()
        for i in range(len(goals)):
            goal = goals[i]
            path = [goal]
            s = goal
            while s != self.init:
                s = list(self.tree.pred[s].keys())[0]
                path.insert(0, s)
            paths[i] = [self.tree.nodes[goal]['cost'], path]
        return paths
Esempio n. 8
0
class tree(object):
    """ construction of prefix and suffix tree
    """
    def __init__(self, ts, buchi_graph, init, final, seg, env):
        """
        :param ts: transition system
        :param buchi_graph:  Buchi graph
        :param init: product initial state
        """
        self.robot = 1
        self.goals = []
        self.ts = ts
        self.buchi_graph = buchi_graph
        self.init = init
        self.dim = len(self.ts['workspace'])
        self.tree = DiGraph(type='PBA', init=init)
        label = self.label(init[0])
        if label != '':
            label = label + '_' + str(1)
        self.tree.add_node(init, cost=0, label=label)

        self.group = dict()
        self.add_group(init)

        self.b_final = final
        self.seg = seg

        self.p = 0.9

        self.env = env

    def add_group(self, q_state):
        """
        group nodes with same buchi state
        :param q_state: new state added to the tree
        """
        try:
            self.group[q_state[1]].append(q_state)
        except KeyError:
            self.group[q_state[1]] = [q_state]

    def min2final(self, min_qb_dict, b_final, cand):
        """
         collects the buchi state in the tree with minimum distance to the final state
        :param min_qb_dict: dict
        :param b_final: feasible final state
        :return: list of buchi states in the tree with minimum distance to the final state
        """
        l_min = np.inf
        b_min = []
        for b_state in cand:
            if min_qb_dict[(b_state, b_final)] < l_min:
                l_min = min_qb_dict[(b_state, b_final)]
                b_min = [b_state]
            elif min_qb_dict[(b_state, b_final)] == l_min:
                b_min.append(b_state)
        return b_min

    def all2one(self, b_min):
        """
        partition nodes into 2 groups
        :param b_min: buchi states with minimum distance to the finals state
        :return: 2 groups
        """
        q_min2final = []
        q_minNot2final = []
        for b_state in self.group.keys():
            if b_state in b_min:
                q_min2final = q_min2final + self.group[b_state]
            else:
                q_minNot2final = q_minNot2final + self.group[b_state]
        return q_min2final, q_minNot2final

    def sample(self, buchi_graph, min_qb_dict, num_grid, centers):
        """
        sample point from the workspace
        :return: sampled point, tuple
        """

        # collects the buchi state in the tree with minimum distance to the final state
        b_min = self.min2final(min_qb_dict, self.b_final, self.group.keys())
        # partition of nodes
        q_min2final, q_minNot2final = self.all2one(b_min)
        # sample random nodes
        p_rand = np.random.uniform(0, 1, 1)
        q_rand = []
        if (p_rand <= self.p and len(q_min2final) > 0) or not q_minNot2final:
            q_rand = q_min2final[np.random.randint(0, len(q_min2final))]
        elif p_rand > self.p or not q_min2final:
            q_rand = q_minNot2final[np.random.randint(0, len(q_minNot2final))]
        # find feasible succssor of buchi state in q_rand
        Rb_q_rand = []
        label = self.label(q_rand[0])
        if label != '':
            label = label + '_' + str(1)

        for b_state in buchi_graph.succ[q_rand[1]]:
            # if self.t_satisfy_b(x_label, buchi_graph.edges[(q_rand[1], b_state)]['label']):
            if self.t_satisfy_b_truth(
                    label, buchi_graph.edges[(q_rand[1], b_state)]['truth']):
                Rb_q_rand.append(b_state)
        # if empty
        if not Rb_q_rand:
            return Rb_q_rand, Rb_q_rand
        # collects the buchi state in the reachable set of qb_rand with minimum distance to the final state
        b_min = self.min2final(min_qb_dict, self.b_final, Rb_q_rand)

        # collects the buchi state in the reachable set of b_min with distance to the final state equal to that of b_min - 1
        decr_dict = dict()
        for b_state in b_min:
            decr = []
            for succ in buchi_graph.succ[b_state]:
                if min_qb_dict[(b_state, self.b_final)] - 1 == min_qb_dict[(
                        succ, self.b_final)] or succ == self.b_final:
                    decr.append(succ)
            decr_dict[b_state] = decr
        M_cand = [
            b_state for b_state in decr_dict.keys() if decr_dict[b_state]
        ]
        # if empty
        if not M_cand:
            return M_cand, M_cand
        # sample b_min and b_decr
        b_min = M_cand[np.random.randint(0, len(M_cand))]
        b_decr = decr_dict[b_min][np.random.randint(0, len(decr_dict[b_min]))]

        truth = buchi_graph.edges[(b_min, b_decr)]['truth']
        x_rand = list(q_rand[0])
        return self.buchi_guided_sample_by_truthvalue(truth, x_rand, num_grid,
                                                      centers)

    def buchi_guided_sample_by_truthvalue(self, truth, x_rand, num_grid,
                                          centers):
        """
        sample guided by truth value
        :param truth: the value making transition occur
        :param x_rand: random selected node
        :param x_label: label of x_rand
        :param regions: regions
        :return: new sampled point
        """
        # stay
        if truth == '1':
            return x_rand

        p_new = 0.8
        region = ''
        for key in truth:
            if truth[key]:
                region = key
        if not region:
            return x_rand

        # select second point withi high probability
        if uniform(0, 1, 1) < p_new:
            return self.target(centers, x_rand, region)
        else:
            while True:
                x_candidate = [0, 0]
                # parallel to one axis
                line = np.random.randint(2, size=1)[0]
                x_candidate[line] = x_rand[line]
                # sample another component
                r = round(1 / num_grid, 10)
                x_candidate[1 - line] = round(
                    np.random.randint(num_grid, size=1)[0] * r + r / 2, 10)
                if x_candidate != x_rand:
                    if 'o' in self.label(x_candidate):
                        continue
                    return tuple(x_candidate)

    def target(self, centers, source, tg):
        source = source
        tg = centers[tg.split('_')[0]]
        destination = shortest_path(self.env, tuple(source), tg)
        return destination

    def acpt_check(self, q_new, label_new, obs_check):
        """
        check the accepting state in the patg leading to q_new
        :param q_min:
        :param q_new:
        :return:
        """
        if self.seg == 'pre':
            if 'accept' in q_new[1]:
                self.goals.append(q_new)
        elif self.seg == 'suf':
            if self.obs_check(self.init, q_new[0], label_new,
                              obs_check) and self.checkTranB(
                                  q_new[1], label_new, self.init[1]):
                self.goals.append(q_new)

    def extend(self, q_new, prec_list, label_new, obs_check):
        """
        :param: q_new: new state form: tuple (mulp, buchi)
        :param: near_v: near state form: tuple (mulp, buchi)
        :param: obs_check: check obstacle free  form: dict { (mulp, mulp): True }
        :param: succ: list of successor of the root
        :return: extending the tree
        """
        # if q_new == ((0.825, 0.425), 'T1_S1'):
        #     print('df')
        added = 0
        cost = np.inf
        q_min = ()
        for pre in prec_list:
            c = self.tree.nodes[pre]['cost'] + np.abs(
                q_new[0][0] - pre[0][0]) + np.abs(q_new[0][1] - pre[0][1])
            if c < cost:
                added = 1
                q_min = pre
                cost = c
        if added == 1:
            self.add_group(q_new)
            self.tree.add_node(q_new, cost=cost, label=label_new)
            self.tree.add_edge(q_min, q_new)
            self.acpt_check(q_new, label_new, obs_check)

    def rewire(self, q_new, succ_list):
        """
        :param: q_new: new state form: tuple (mul, buchi)
        :param: near_v: near state form: tuple (mul, buchi)
        :param: obs_check: check obstacle free form: dict { (mulp, mulp): True }
        :return: rewiring the tree
        """
        for suc in succ_list:
            # root
            if suc == self.init:
                continue
            c = self.tree.nodes[q_new]['cost'] + np.abs(
                q_new[0][0] - suc[0][0]) + np.abs(q_new[0][1] - suc[0][1])
            delta_c = self.tree.nodes[suc]['cost'] - c
            # update the cost of node in the subtree rooted at near_vertex
            if delta_c > 0:
                self.tree.remove_edge(list(self.tree.pred[suc].keys())[0], suc)
                self.tree.add_edge(q_new, suc)
                edges = dfs_labeled_edges(self.tree, source=suc)
                for u, v, d in edges:
                    if d == 'forward':
                        self.tree.nodes[v][
                            'cost'] = self.tree.nodes[v]['cost'] - delta_c

    def prec(self, q_new, label_new, obs_check):
        """
        find the predcessor of q_new
        :param q_new: new product state
        :return: label_new: label of new
        """
        p_prec = []
        for vertex in self.tree.nodes:
            if q_new != vertex and self.obs_check(vertex, q_new[0], label_new, obs_check) \
                    and self.checkTranB(vertex[1], self.tree.nodes[vertex]['label'], q_new[1]):
                p_prec.append(vertex)
        return p_prec

    def succ(self, q_new, label_new, obs_check):
        """
        find the successor of q_new
        :param q_new: new product state
        :return: label_new: label of new
        """
        p_succ = []
        for vertex in self.tree.nodes:
            if q_new != vertex and self.obs_check(vertex, q_new[0], label_new, obs_check) \
                    and self.checkTranB(q_new[1], self.tree.nodes[q_new]['label'], vertex[1]):
                p_succ.append(vertex)
        return p_succ

    def obs_check(self, q_tree, x_new, label_new, obs_check):
        """
        check whether obstacle free along the line from q_tree to x_new
        :param q_tree: vertex in the tree
        :param x_new:
        :param label_new:
        :return: true or false
        """

        if q_tree[0][0] != x_new[0] and q_tree[0][1] != x_new[1]:
            return False

        if (q_tree[0], x_new) in obs_check.keys():
            return obs_check[(q_tree[0], x_new)]

        if (x_new, q_tree[0]) in obs_check.keys():
            return obs_check[(x_new, q_tree[0])]

        # the line connecting two points crosses an obstacle
        for (obs, boundary) in iter(self.ts['obs'].items()):
            if LineString([Point(q_tree[0]),
                           Point(x_new)]).intersects(boundary):
                obs_check[(q_tree[0], x_new)] = False
                obs_check[(x_new, q_tree[0])] = False
                return False

        for (region, boundary) in iter(self.ts['region'].items()):
            if LineString([Point(q_tree[0]), Point(x_new)]).intersects(boundary) \
                    and region + '_' + str(1) != label_new \
                    and region + '_' + str(1) != self.tree.nodes[q_tree]['label']:
                obs_check[(q_tree[0], x_new)] = False
                obs_check[(x_new, q_tree[0])] = False
                return False

        obs_check[(q_tree[0], x_new)] = True
        obs_check[(x_new, q_tree[0])] = True
        return True

    def label(self, x):
        """
        generating the label of position state
        :param x: position
        :return: label
        """

        point = Point(x)
        # whether x lies within obstacle
        for (obs, boundary) in iter(self.ts['obs'].items()):
            if point.within(boundary):
                return obs

        # whether x lies within regions
        for (region, boundary) in iter(self.ts['region'].items()):
            if point.within(boundary):
                return region
        # x lies within unlabeled region
        return ''

    def checkTranB(self, b_state, x_label, q_b_new):
        """ decide valid transition, whether b_state --L(x)---> q_b_new
             :param b_state: buchi state
             :param x_label: label of x
             :param q_b_new buchi state
             :return True satisfied
        """
        b_state_succ = self.buchi_graph.succ[b_state]
        # q_b_new is not the successor of b_state
        if q_b_new not in b_state_succ:
            return False

        truth = self.buchi_graph.edges[(b_state, q_b_new)]['truth']
        if self.t_satisfy_b_truth(x_label, truth):
            return True

        return False

    def t_satisfy_b_truth(self, x_label, truth):
        """
        check whether transition enabled under current label
        :param x_label: current label
        :param truth: truth value making transition enabled
        :return: true or false
        """
        if truth == '1':
            return True

        true_label = [
            truelabel for truelabel in truth.keys() if truth[truelabel]
        ]
        for label in true_label:
            if label not in x_label:
                return False

        false_label = [
            falselabel for falselabel in truth.keys() if not truth[falselabel]
        ]
        for label in false_label:
            if label in x_label:
                return False

        return True

    def findpath(self, goals):
        """
        find the path backwards
        :param goals: goal state
        :return: dict path : cost
        """
        paths = OrderedDict()
        for i in range(len(goals)):
            goal = goals[i]
            path = [goal]
            s = goal
            while s != self.init:
                s = list(self.tree.pred[s].keys())[0]
                path.insert(0, s)
            # paths[i] = [self.tree.nodes[goal]['cost'], path]
            paths[i] = [self.path_cost(path), path]
            if self.seg == 'suf':
                paths[i] = [
                    self.path_cost(path) +
                    np.abs(path[-1][0][0] - self.init[0][0]) +
                    np.abs(path[-1][0][1] - self.init[0][1]),
                    path + [self.init]
                ]
        return paths

    def path_cost(self, path):
        """
        calculate cost
        :param path:
        :return:
        """
        cost = 0
        for k in range(len(path) - 1):
            cost += np.abs(path[k + 1][0][0] -
                           path[k][0][0]) + np.abs(path[k + 1][0][1] -
                                                   path[k][0][1])
        return cost
Esempio n. 9
0
class BiasedTree(object):
    """
    biased tree for prefix and suffix parts
    """
    def __init__(self, workspace, buchi, init_state, init_label, segment,
                 para):
        """
        initialization of the tree
        :param workspace: workspace
        :param buchi: buchi automaton
        :param init_state: initial location of the robots
        :param init_label: label generated by the initial location
        :param segment: prefix or suffix part
        :param para: parameters regarding biased-sampling method
        """
        # parameters regarding workspace
        self.workspace = workspace.workspace
        self.dim = len(self.workspace)
        self.regions = workspace.regions
        self.obstacles = workspace.obs
        self.robot = buchi.number_of_robots
        # parameters regarding task
        self.buchi = buchi
        self.accept = self.buchi.buchi_graph.graph['accept']
        self.init = init_state

        # initlizing the tree
        self.biased_tree = DiGraph(type='PBA', init=self.init)
        self.biased_tree.add_node(self.init, cost=0, label=init_label)

        # parameters regarding TL-RRT* algorithm
        self.goals = []
        self.step_size = para['step_size']
        self.segment = segment
        self.lite = para['is_lite']
        # size of the ball used in function near
        uni_v = np.power(np.pi, self.robot * self.dim /
                         2) / math.gamma(self.robot * self.dim / 2 + 1)
        self.gamma = np.ceil(
            4 * np.power(1 / uni_v, 1. /
                         (self.dim * self.robot)))  # unit workspace
        # parameters regarding biased sampling
        # group the nodes in the tree by the buchi state
        self.group = dict()
        self.add_group(self.init)

        # select final buchi states
        if self.segment == 'prefix':
            self.b_final = self.buchi.buchi_graph.graph['accept'][0]
        else:
            self.b_final = self.buchi.buchi_graph.graph['accept']
        self.min_dis = np.inf
        self.q_min2final = []
        self.not_q_min2final = []
        self.update_min_dis2final_and_partition(self.init)

        # probability of selecting q_p_closest
        self.p_closest = para['p_closest']
        # weight when selecting x_rand
        self.y_rand = para['y_rand']
        # threshold for collision avoidance
        self.threshold = para['threshold']
        # polygon obstacle for visibility-based method
        polys = []
        for poly in self.obstacles.values():
            polys.append([
                vg.Point(x[0], x[1]) for x in list(poly.exterior.coords)[:-1]
            ])
        self.g = vg.VisGraph()
        self.g.build(polys, status=False)

    def trunc(self, i, value):
        """
        limit the robot in the range of workspace
        :param i: robot i, starting from 0
        :param value: value to be adjusted
        :return: adjusted value
        """
        if value < 0:
            return 0
        elif value > self.workspace[i]:
            return self.workspace[i]
        else:
            return value

    def biased_sample(self):
        """
        buchi guided biased sample
        :return: sampled point x_rand, closest node q_p_closest in terms of transitions
        """
        # sample nodes as q_p_closest from two partitioned sets
        p_rand = np.random.uniform(0, 1, 1)
        q_p_closest = None
        if (p_rand <= self.p_closest
                and len(self.q_min2final) > 0) or not self.not_q_min2final:
            q_p_closest = sample_uniform_geometry(self.q_min2final)
        elif p_rand > self.p_closest or not self.q_min2final:
            q_p_closest = sample_uniform_geometry(self.not_q_min2final)

        # find the reachable sets of buchi state of q_p_closest
        reachable_q_b_closest = []
        for b_state in self.buchi.buchi_graph.succ[q_p_closest[1]]:
            if self.check_transition_b_helper(
                    self.biased_tree.nodes[q_p_closest]['label'],
                    self.buchi.buchi_graph.edges[(q_p_closest[1],
                                                  b_state)]['truth']):
                reachable_q_b_closest.append(b_state)
        # if reachable_q_b_closest is empty
        if not reachable_q_b_closest:
            return [], []

        # collect the buchi states in the reachable set of q_p_closest with minimum distance to the final state
        b_min_from_q_b_closest = self.get_min2final_from_subset(
            reachable_q_b_closest)

        # collect the buchi states in the reachable set b_min_from_q_b_closest whose successors is 1 step less from
        # the final state than the it is
        reachable_decr = dict()
        m_q_b_closest = []
        for b_state in b_min_from_q_b_closest:
            candidate = []
            for succ in self.buchi.buchi_graph.succ[b_state]:
                if self.buchi.min_length[(b_state, self.b_final)] - 1 == self.buchi.min_length[(succ, self.b_final)] \
                        or succ in self.buchi.buchi_graph.graph['accept']:
                    candidate.append(succ)
            if candidate:
                reachable_decr[b_state] = candidate
                m_q_b_closest.append(b_state)
        # if empty
        if not m_q_b_closest:
            return [], []
        # sample q_b_min and q_b_decr
        q_b_min = sample_uniform_geometry(m_q_b_closest)
        q_b_decr = sample_uniform_geometry(reachable_decr[q_b_min])
        # get the guarding symbol
        truth = self.buchi.buchi_graph.edges[(q_b_min, q_b_decr)]['truth']
        x_rand = list(q_p_closest[0])
        return self.buchi_guided_sample_by_truthvalue(
            truth, x_rand, q_p_closest,
            self.biased_tree.nodes[q_p_closest]['label'])

    def buchi_guided_sample_by_truthvalue(self, truth, x_rand, q_p_closest,
                                          x_label):
        """
        sample a point moving towards the region corresponding to the guarding symbol
        :param truth: guarding symbol that enables the transition
        :param q_p_closest: the node q_p_closest
        :param x_rand: point to be sampled
        :param x_label: label of position of q_p_closest
        :return: sampled point x_rand, q_p_closest
        """
        if truth == '1':
            return q_p_closest[0], q_p_closest
        else:
            for key in truth:
                # move towards the target position
                if truth[key] and key not in x_label:
                    pair = key.split('_')  # region-robot pair
                    robot_index = int(pair[1]) - 1
                    orig_x_rand = x_rand[
                        robot_index]  # save for further recover
                    while True:
                        x_rand[robot_index] = orig_x_rand  # recover
                        if np.random.uniform(0, 1, 1) <= self.y_rand:
                            target = self.get_target(orig_x_rand, pair[0])
                            x_rand[
                                robot_index] = self.gaussian_guided_towards_target(
                                    orig_x_rand, target)
                        else:
                            x_rand_i = [
                                uniform(0, self.workspace[i])
                                for i in range(self.dim)
                            ]
                            x_rand[robot_index] = tuple(x_rand_i)
                        # sampled point lies within obstacles
                        if 'o' in self.get_label(x_rand[robot_index]): continue
                        # collision avoidance
                        if self.collision_avoidance(x_rand, robot_index): break

        return tuple(x_rand), q_p_closest

    def add_group(self, q_p):
        """
        add q_p to the group within which all states have the same buchi state
        :param q_p: a product state
        """
        try:
            self.group[q_p[1]].append(q_p)
        except KeyError:
            self.group[q_p[1]] = [q_p]

    def get_min2final_from_subset(self, subset):
        """
        collect the buchi state from the subset of nodes with minimum distance to the final state
        :param subset: set of nodes
        :return: list of buchi states with minimum distance to the final state
        """
        l_min = np.inf
        b_min = set()
        for b_state in subset:
            if self.buchi.min_length[(b_state, self.b_final)] < l_min:
                l_min = self.buchi.min_length[(b_state, self.b_final)]
                b_min = set([b_state])
            elif self.buchi.min_length[(b_state, self.b_final)] == l_min:
                b_min.add(b_state)
        return b_min

    def update_min_dis2final_and_partition(self, q_p_new):
        """
         check whether q_p_new has the buchi component with minimum distance to the final state
         if so, update the set b_min which collects the buchi states with minimum distance to the final state
         and the set q_min2final which collects nodes in the tree with buchi states in b_min
        :param q_p_new: new product state
        """
        # smaller than the current nodes with minimum distance
        if self.buchi.min_length[(q_p_new[1], self.b_final)] < self.min_dis:
            self.min_dis = self.buchi.min_length[(q_p_new[1], self.b_final)]
            self.not_q_min2final = self.not_q_min2final + self.q_min2final
            self.q_min2final = [q_p_new]
        # equivalent to
        elif self.buchi.min_length[(q_p_new[1], self.b_final)] == self.min_dis:
            self.q_min2final = self.q_min2final + [q_p_new]
        # larger than
        else:
            self.not_q_min2final = self.not_q_min2final + [q_p_new]

    def get_target(self, init, target):
        """
        find the second vertex in the shortest path from initial point to the target region
        :param init: initial point
        :param target: target labeled region
        :return: the second vertex
        """
        tg = self.regions[target].centroid.coords[0]
        shortest = self.g.shortest_path(vg.Point(init[0], init[1]),
                                        vg.Point(tg[0], tg[1]))
        return shortest[1].x, shortest[1].y

    def get_truncated_normal(self, mean=0, sd=1, low=0, upp=10):
        """
        truncated normal distribution
        :param mean: mean value
        :param sd: standard deviation
        :param low: lower bound of the random variable
        :param upp: upper bound of the random variable
        :return: value of the random variable
        """
        return truncnorm((low - mean) / sd, (upp - mean) / sd,
                         loc=mean,
                         scale=sd)

    def gaussian_guided_towards_target(self, x, target):
        """
        calculate new point x_rand guided by the target
        distance and angle follow the gaussian distribution
        :param x: initial point
        :param target: target point
        :return: new point x_rand
        """
        d = self.get_truncated_normal(0, 1 / 3 * self.workspace[0], 0,
                                      np.inf).rvs()
        # d = self.get_truncated_normal(np.linalg.norm(np.subtract(x, target)), 1/3/3, 0, np.inf)
        angle = np.random.normal(0, np.pi / 12 / 3 / 3, 1) + np.arctan2(
            target[1] - x[1], target[0] - x[0])
        x_rand = np.add(x, np.append(d * np.cos(angle), d * np.sin(angle)))
        x_rand = [self.trunc(i, x_rand_i) for i, x_rand_i in enumerate(x_rand)]
        return tuple(x_rand)

    def collision_avoidance(self, x, robot_index):
        """
        check whether robots with smaller index than robot_index collide with the robot of index robot_index
        :param x: position of robots
        :param robot_index: index of the specific robot
        :return: true if collision free
        """
        for i in range(len(x)):
            if i != robot_index and np.fabs(x[i][0] - x[robot_index][0]) <= self.threshold and \
                            np.fabs(x[i][1] - x[robot_index][1]) <= self.threshold:
                return False
        return True

    def nearest(self, x_rand):
        """
        find the nearest class of vertices in the tree
        :param: x_rand randomly sampled point form: single point ()
        :return: nearest class of vertices form: single point ()
        """
        min_dis = math.inf
        q_p_nearest = []
        for node in self.biased_tree.nodes:
            x = self.mulp2single(node[0])
            dis = np.linalg.norm(np.subtract(x_rand, x))
            if dis < min_dis:
                q_p_nearest = [node]
                min_dis = dis
            elif dis == min_dis:
                q_p_nearest.append(node)
        return q_p_nearest

    def steer(self, x_rand, x_nearest):
        """
        steer
        :param: x_rand randomly sampled point form: single point ()
        :param: x_nearest nearest point in the tree form: single point ()
        :return: new point single point ()
        """
        if np.linalg.norm(np.subtract(x_rand, x_nearest)) <= self.step_size:
            return x_rand
        else:
            return tuple(
                np.asarray(x_nearest) + self.step_size *
                (np.subtract(x_rand, x_nearest)) /
                np.linalg.norm(np.subtract(x_rand, x_nearest)))

    def extend(self, q_new, near_nodes, label, obs_check):
        """
        add the new state q_new to the tree
        :param: q_new: new state
        :param: near_nodes: near state
        :param: obs_check: check the line connecting two points are inside the freespace
        :return: the tree after extension
        """
        added = False
        cost = np.inf
        q_min = ()
        STL_cost = []
        i = 0
        # loop over all nodes in near_nodes
        print("near_nodes", near_nodes, "\n")
        for node in near_nodes:
            if q_new != node and obs_check[(q_new[0], node[0])] and \
                    self.check_transition_b(node[1], self.biased_tree.nodes[node]['label'], q_new[1]):

                STL_cost = calculate_STL_cost(self.mulp2single(q_new[0]),
                                              self.mulp2single(node[0]))
                c = self.biased_tree.nodes[node]['cost'] \
                    + np.linalg.norm(np.subtract(self.mulp2single(q_new[0]), self.mulp2single(node[0])))*STL_cost
                if c < cost:
                    print("\n Alter cost in extend for node:", node, "\n")
                    print('STL_cost_extend save:', STL_cost, '\n')
                    print("new cost:", c, "\n")
                    print("previous cost:", cost, "\n")
                    added = True
                    q_min = node
                    cost = c
                i += 1

        if added:
            self.biased_tree.add_node(q_new, cost=cost, label=label)
            self.biased_tree.add_edge(q_min, q_new)
            self.add_group(q_new)
            self.update_min_dis2final_and_partition(q_new)
            if self.segment == 'prefix' and q_new[1] in self.accept:
                q_n = list(list(self.biased_tree.pred[q_new].keys())[0])
                cost = self.biased_tree.nodes[tuple(q_n)]['cost']
                print("cost prefix", cost, "\n")
                label = self.biased_tree.nodes[tuple(q_n)]['label']
                q_n[1] = q_new[1]
                q_n = tuple(q_n)
                self.biased_tree.add_node(q_n, cost=cost, label=label)
                self.biased_tree.add_edge(q_min, q_n)
                self.add_group(q_n)
                self.update_min_dis2final_and_partition(q_n)
                self.goals.append(q_n)
            if self.segment == 'suffix' and self.init[1] == q_new[1]:
                self.goals.append(q_new)
        return added

    def rewire(self, q_new, near_nodes, obs_check):
        """
        :param: q_new: new state
        :param: near_nodes: states returned near
        :param: obs_check: check whether obstacle-free
        :return: the tree after rewiring
        """
        STL_cost = []
        i = 0
        for node in near_nodes:
            if obs_check[(q_new[0], node[0])] \
                    and self.check_transition_b(q_new[1], self.biased_tree.nodes[q_new]['label'], node[1]):

                STL_cost = calculate_STL_cost(self.mulp2single(q_new[0]),
                                              self.mulp2single(node[0]))
                c = self.biased_tree.nodes[q_new]['cost'] \
                    + np.linalg.norm(np.subtract(self.mulp2single(q_new[0]), self.mulp2single(node[0])))*STL_cost
                delta_c = self.biased_tree.nodes[node]['cost'] - c
                # update the cost of node in the subtree rooted at the rewired node
                if delta_c > 0:
                    print("node", node, "\n")
                    print('STL_cost_rewire save:', STL_cost, '\n')
                    print("final cost c:", c, "\n")
                    print("previous cost:",
                          self.biased_tree.nodes[node]['cost'], "\n")
                    self.biased_tree.remove_edge(
                        list(self.biased_tree.pred[node].keys())[0], node)
                    self.biased_tree.add_edge(q_new, node)
                    edges = dfs_labeled_edges(self.biased_tree, source=node)
                    for _, v, d in edges:
                        if d == 'forward':
                            self.biased_tree.nodes[v][
                                'cost'] = self.biased_tree.nodes[v][
                                    'cost'] - delta_c
                i += 1

    def near(self, x_new):
        """
        find the states in the near ball
        :param x_new: new point form: single point
        :return: p_near: near state, form: tuple (mulp, buchi)
        """
        near_nodes = []
        radius = min(
            self.gamma * np.power(
                np.log(self.biased_tree.number_of_nodes() + 1) /
                self.biased_tree.number_of_nodes(), 1. /
                (self.dim * self.robot)), self.step_size)
        for node in self.biased_tree.nodes:
            if np.linalg.norm(np.subtract(x_new, self.mulp2single(
                    node[0]))) <= radius:
                near_nodes.append(node)
        return near_nodes

    def obstacle_check(self, near_node, x_new, label):
        """
        check whether line from x_near to x_new is obstacle-free
        :param near_node: nodes returned by near function
        :param x_new: new position component
        :param label: label of x_new
        :return: a dictionary indicating whether the line connecting two points are obstacle-free
        """

        obs_check = {}
        checked = set()

        for node in near_node:
            # whether the position component of nodes has been checked
            if node[0] in checked:
                continue
            checked.add(node[0])
            obs_check[(x_new, node[0])] = True
            flag = True  # indicate whether break and jump to outer loop
            for r in range(self.robot):
                # the line connecting two points crosses an obstacle
                for (obs, boundary) in iter(self.obstacles.items()):
                    if LineString([Point(node[0][r]),
                                   Point(x_new[r])]).intersects(boundary):
                        obs_check[(x_new, node[0])] = False
                        flag = False
                        break
                # no need to check further
                if not flag:
                    break

                for (region, boundary) in iter(self.regions.items()):
                    if LineString([Point(node[0][r]), Point(x_new[r])]).intersects(boundary) \
                        and region + '_' + str(r + 1) != label[r] \
                            and region + '_' + str(r + 1) != self.biased_tree.nodes[node]['label'][r]:
                        obs_check[(x_new, node[0])] = False
                        flag = False
                        break
                # no need to check further
                if not flag:
                    break

        return obs_check

    def get_label(self, x):
        """
        generating the label of position component
        :param x: position
        :return: label
        """
        point = Point(x)
        # whether x lies within obstacle
        for (obs, boundary) in iter(self.obstacles.items()):
            if point.within(boundary):
                return obs

        # whether x lies within regions
        for (region, boundary) in iter(self.regions.items()):
            if point.within(boundary):
                return region
        # x lies within unlabeled region
        return ''

    def check_transition_b(self, q_b, x_label, q_b_new):
        """
        check whether q_b -- x_label ---> q_b_new
        :param q_b: buchi state
        :param x_label: label of x
        :param q_b_new: buchi state
        :return True if satisfied
        """
        b_state_succ = self.buchi.buchi_graph.succ[q_b]
        # q_b_new is not the successor of b_state
        if q_b_new not in b_state_succ:
            return False
        # check whether label of x enables the transition
        truth = self.buchi.buchi_graph.edges[(q_b, q_b_new)]['truth']
        if self.check_transition_b_helper(x_label, truth):
            return True

        return False

    def check_transition_b_helper(self, x_label, truth):
        """
        check whether transition enabled with current generated label
        :param x_label: label of the current position
        :param truth: symbol enabling the transition
        :return: true or false
        """
        if truth == '1':
            return True
        # all true propositions should be satisdied
        true_label = [
            true_label for true_label in truth.keys() if truth[true_label]
        ]
        for label in true_label:
            if label not in x_label: return False

        #  all fasle propositions should not be satisfied
        false_label = [
            false_label for false_label in truth.keys()
            if not truth[false_label]
        ]
        for label in false_label:
            if label in x_label: return False

        return True

    def find_path(self, goals):
        """
        find the path backwards
        :param goals: found all goal states
        :return: the path leading to the goal state and the corresponding cost
        """
        paths = OrderedDict()
        for i in range(len(goals)):
            goal = goals[i]
            path = [goal]
            s = goal
            while s != self.init:
                s = list(self.biased_tree.pred[s].keys())[0]
                path.insert(0, s)
            paths[i] = [self.biased_tree.nodes[goal]['cost'], path]
        return paths

    def mulp2single(self, point):
        """
        convert a point, which in the form of a tuple of tuple ((),(),(),...) to point in the form of a flat tuple
        :param point: point((position of robot 1), (position of robot2), (), ...)
        :return: point (position of robot1, position of robot2, ...)
        """
        return tuple([p for r in point for p in r])

    def single2mulp(self, point):
        """
        convert a point in the form of flat tuple to point in the form of a tuple of tuple ((),(),(),...)
        :param point: point (position of robot1, position of robot2, ...)
        :return:  point((position of robot 1), (position of robot2), (), ...)
        """
        mp = [
            point[i * self.dim:(i + 1) * self.dim] for i in range(self.robot)
        ]
        return tuple(mp)