def toplevel_to_networkx():
    """lkbutils.rdflib_to_networkx is available."""
    from lkbutils import rdflib_to_networkx

    rdflib_graph = Fixture.graph_sample.rdflib_graph
    converted_on_toplevel = rdflib_to_networkx(rdflib_graph)
    converted_on_instance = rdflib_model.to_networkx(rdflib_graph)

    # equality of nodes, edges + adge attributes
    assert converted_on_toplevel.nodes() == converted_on_instance.nodes()
    assert (list(networkx.generate_edgelist(converted_on_toplevel)) ==
            list(networkx.generate_edgelist(converted_on_instance)))
Esempio n. 2
0
def encode_gps_full(gps, base=10):
    "converts a global parameter set object into a string representation"
    gps_encoding = ""
    totallength = 0
    nodes = gps.keys()
    edges = []
    for node in sorted(nodes):
        # first reverse engineer contexts, predecessors, lps
        contexts = gps[node].keys()
        n = len(contexts)
        preds = sorted(list(set().union(*contexts)))
        edges += [(pred, node) for pred in preds]
        #print node
        lps = gps[node]
        #print "lps (from encode_gps):", lps
        
        # then encode current lps
        code = encode_lps(preds, lps, base)
        
        # finally shift digits and add n-k zeros
        k = len(str(code))
        codestring = (n-k)*'0' + str(code)
        gps_encoding = codestring + gps_encoding
        totallength += n
    IG = nx.DiGraph()
    IG.add_edges_from(edges)
    IGstring = "_".join(nx.generate_edgelist(IG, data=False))
    finalencoding = gps_encoding.zfill(totallength)+"."+IGstring
    return finalencoding
def updateGraph(nGraph, net):
    n2 = nx.convert_node_labels_to_integers(nGraph)
    edgelist = nx.generate_edgelist(n2, data=False)
    edge_export = []
    for pair in edgelist:
        nodes = pair.split(' ')
        edge_export.append(int(nodes[0]))
        edge_export.append(int(nodes[1]))
    net.controlTask.UpdateGraph(edge_export)
 def test_networkx_module(self):
     my_graph = ExtendedGraph()
     my_graph.add_edge(1, 2, weight=4.7)
     my_graph.add_node(42)
     self.assertEqual(sorted(my_graph.nodes()), [1, 2, 42])
     self.assertEqual(sorted(my_graph.edges()), [(1, 2)])
     self.assertEqual(
                      list(nx.generate_edgelist(my_graph)),
                      ["1 2 {'weight': 4.7}"])
Esempio n. 5
0
def write_input_file(G, stress_budget, path):
    with open(path, "w") as fo:
        n = len(G)
        s_total = stress_budget
        lines = nx.generate_edgelist(G, data=["happiness","stress"])
        fo.write(str(n) + "\n")
        fo.write(str(s_total) + "\n")
        fo.writelines("\n".join(lines))
        fo.close()
Esempio n. 6
0
def netx_to_csv(func_graph):
	""" Convert a networkx graph to csv """
	out_string = '<p>'
	for line in nx.generate_edgelist(func_graph, delimiter=','):
		""" source, target, weight """
		edge = line.replace('\'', '').replace('{weight:', '').replace('}', '').replace(' ', '')
		out_string += edge + '<br>'
	out_string += '<\p>'
	return out_string
Esempio n. 7
0
    def graph2walks(self, method="", params={}):

        self.params = params

        if method == "deepwalk":
            number_of_walks = self.params['number_of_walks']
            walk_length = self.params['walk_length']
            alpha = self.params['alpha']

            # Temporarily generate the edge list
            with open("./temp/graph.edgelist", 'w') as f:
                for line in nx.generate_edgelist(self.graph, data=False):
                    f.write("{}\n".format(line))

            dwg = deepwalk.load_edgelist("./temp/graph.edgelist",
                                         undirected=True)
            corpus = deepwalk.build_deepwalk_corpus(G=dwg,
                                                    num_paths=number_of_walks,
                                                    path_length=walk_length,
                                                    alpha=alpha,
                                                    rand=random.Random(0))

        elif method == "node2vec":

            number_of_walks = self.params['number_of_walks']
            walk_length = self.params['walk_length']
            p = self.params['p']
            q = self.params['q']

            for edge in self.graph.edges():
                self.graph[edge[0]][edge[1]]['weight'] = 1
            G = node2vec.Graph(nx_G=self.graph, p=p, q=q, is_directed=False)
            G.preprocess_transition_probs()
            corpus = G.simulate_walks(num_walks=number_of_walks,
                                      walk_length=walk_length)

        else:
            raise ValueError("Invalid method name!")
        """
        new_corpus = []
        line_counter = 0
        line = []
        for walk in corpus:
            if line_counter < self.params['number_of_walks']:
                line.extend(walk)
                line_counter += 1
            else:
                line_counter = 0
                new_corpus.append(line)
                line = []

        corpus = new_corpus
        """
        self.corpus = corpus

        return self.corpus
def graphStats(G,detailed=False):
    # Can probably do more https://networkx.github.io/documentation/latest/reference/functions.html
    print "-------------------------------------"
    print "Number of edges in the graph: ", G.number_of_edges()
    print "Number of nodes in the graph: ", G.number_of_nodes()
    print "-------------------------------------"
    if detailed:
        print "Detailed graph statistics:" 
        for line in nx.generate_edgelist(G):
            print(line)
Esempio n. 9
0
def load_edge_index(file = 'cora.edges', path = '../dataset/cora/'):
    G = nx.read_edgelist(path + file, nodetype=int, delimiter = ',', data=(('weight',float),), create_using=nx.DiGraph())
    edge_index = []
    for line in nx.generate_edgelist(G, data=False):
        line = line.split(' ')
        _from_, _to_ = int(line[0]), int(line[1])
        edge_index.append([_from_, _to_])
    edge_index = np.array(edge_index, dtype=np.int).T
    edge_index = torch.from_numpy(edge_index)
    return edge_index
Esempio n. 10
0
 def get_edgelist(self):
     edgelist = []
     for edge in nx.generate_edgelist(self.g_nx):
         edgelist.append(str(edge).strip('{}'))
     el = []
     for edge in edgelist:
         splitted = edge.split()
         numeric = map(float,splitted)
         el.append(list(numeric))
     return el
Esempio n. 11
0
def write_dot_helper(G, path, encoding='utf-8'):
    #a simplified implementation of dot writer
    #needed in the Windows platform where pygraphviz is not available
    #loses label information
    with open(path, mode='wb') as f:
        header = 'strict graph ' + getattr(G, 'name', 'replica') + ' {\n'.encode(encoding)
        f.write(header) 
        for line in nx.generate_edgelist(G, ' -- ', False):
            line =' %s;\n'%line
            f.write(line.encode(encoding))
        f.write('}\n'.encode(encoding))
Esempio n. 12
0
 def _get_basepair_list(self, graph):
     """
     Accepts single graph as input.
     Returns a list of all base pairs in the folding.
     """
     list_bpairs = []
     for line in nx.generate_edgelist(graph):
         if line.find('basepair') > 0:
             list_bpairs.append(
                 (int(line.split(' ')[0]), int(line.split(' ')[1])))
     return list_bpairs
 def _get_basepair_list(self, graph):
     """
     Accepts single graph as input.
     Returns a list of all base pairs in the folding.
     """
     list_bpairs = []
     for line in nx.generate_edgelist(graph):
         if line.find('basepair') > 0:
             list_bpairs.append(
                 (int(line.split(' ')[0]), int(line.split(' ')[1])))
     return list_bpairs
Esempio n. 14
0
def depgraph(request):
    """ A view to generate and render the puzzle dependency graph visualization """

    hunt = Hunt.objects.get(is_current_hunt=True)
    G = nx.DiGraph()
    for puzzle in hunt.puzzle_set.all():
        for unlock in puzzle.unlocks.all():
            G.add_edge(unlock.puzzle_number, puzzle.puzzle_number)
    edges = [line.split(' ') for line in nx.generate_edgelist(G, data=False)]
    context = {'puzzles': hunt.puzzle_set.all(), 'edges': edges}
    return render(request, 'depgraph.html', context)
Esempio n. 15
0
 def save_edge_list(self, save_as='edges.csv', data=True):
     """Exporta la lista de aristas para ser utilizados por otros programas de analisis de redes"""
     g = self.g
     output = "Source,Target,Weight\n"
     edge_list = [i.split(',') for i in nx.generate_edgelist(g, delimiter=',', data=['weight'])]
     for i in edge_list:
         output += "%s,%s,%s\n"%(self.vertex_labels[int(i[0])], self.vertex_labels[int(i[1])], i[2])
     output_name = save_as
     with open(output_name, 'w') as file:
         file.write(output)
         file.close
Esempio n. 16
0
def main():
    opts = get_options()
    random.seed(opts.seed)
    G = nx.read_edgelist(opts.input, nodetype=int)
    G = optimize(G, GraphConfig(opts.size, opts.r), opts.step, opts.log)

    os = open(opts.output, 'w') if opts.output else sys.stdout
    for e in nx.generate_edgelist(G, data=False):
        print(e, file=os)
    if opts.output:
        os.close()
Esempio n. 17
0
def depgraph(request):
    """ A view to generate and render the puzzle dependency graph visualization """

    hunt = Hunt.objects.get(is_current_hunt=True)
    G = nx.DiGraph()
    for puzzle in hunt.puzzle_set.all():
        for unlock in puzzle.unlocks.all():
            G.add_edge(unlock.puzzle_number, puzzle.puzzle_number)
    edges = [line.split(' ') for line in nx.generate_edgelist(G, data=False)]
    context = {'puzzles': hunt.puzzle_set.all(), 'edges': edges}
    return render(request, 'depgraph.html', context)
Esempio n. 18
0
    def get_list_of_edges(self):
        edge_list_tuples = []
        for edge in nx.generate_edgelist(self.G, data=False):
            if (int(edge.split(" ")[0]) < int(edge.split(" ")[1])):
                edge_list_tuples.append(
                    (int(edge.split(" ")[0]), int(edge.split(" ")[1])))
            else:
                edge_list_tuples.append(
                    (int(edge.split(" ")[1]), int(edge.split(" ")[0])))

        return (edge_list_tuples)
Esempio n. 19
0
    def __init__(self,
                 n=0,
                 d=4,
                 c=1.5,
                 lam=1,
                 beta=1,
                 falling_probability=0,
                 model=None,
                 starting_edge_list=[],
                 edge_birth_rate=None,
                 edge_death_rate=None):
        self.G = nx.Graph()
        self.entering_nodes = []
        self.G.add_nodes_from([i for i in range(0, n)])
        self.n = n
        self.d = d
        self.tolerance = int(c * d)
        self.c = c
        self.inrate = lam
        self.outrate = beta
        self.target_n = self.set_target_size(lam, beta)
        self.p = falling_probability
        self.flooding = Flooding()
        self.consensus = Consensus()
        self.initial_colors = 2
        self.consensus_bias = [0.5, 0.5]
        self.number_of_exiting_nodes_at_each_round = []
        self.number_of_entering_nodes_at_each_round = []
        self.type_of_dynamic_graph = model
        self.converged = False
        self.target_density = self.target_size_achieved()
        self.max_label = n
        self.birth_rate = edge_birth_rate
        self.death_rate = edge_death_rate
        self.semiregular_percentage = 100
        self.time_conv = 0
        self.reset_number = 0
        self.t = 0
        self.max_label = -1
        if (starting_edge_list):
            self.G.add_edges_from(starting_edge_list)
        if (model == "EdgeMarkovian"):
            kn = nx.complete_graph(n)
            self.kn_edges = []
            for e in nx.generate_edgelist(kn, data=False):
                if (int(e.split(" ")[0]) < int(e.split(" ")[1])):

                    self.kn_edges.append(
                        (int(e.split(" ")[0]), int(e.split(" ")[1])))
                else:
                    self.kn_edges.append(
                        (int(e.split(" ")[1]), int(e.split(" ")[0])))
        else:
            self.kn_edges = []
Esempio n. 20
0
 def _find_paired_nodes(self, graph):
     """
     Returns a list containing all paired nodes in a graph.
     """
     paired_list = []
     for line in nx.generate_edgelist(graph):
         if ('basepair' in line):
             if not (int(line.split(' ')[0]) in paired_list):
                 paired_list.append(int(line.split(' ')[0]))
             if not (int(line.split(' ')[1]) in paired_list):
                 paired_list.append(int(line.split(' ')[1]))
     return paired_list
 def _find_paired_nodes(self, graph):
     """
     Returns a list containing all paired nodes in a graph.
     """
     paired_list = []
     for line in nx.generate_edgelist(graph):
         if ('basepair' in line):
             if not (int(line.split(' ')[0]) in paired_list):
                 paired_list.append(int(line.split(' ')[0]))
             if not (int(line.split(' ')[1]) in paired_list):
                 paired_list.append(int(line.split(' ')[1]))
     return paired_list
def read_graph_list(dataset_folder):
    dataset_list = []
    with open(root_path + '/data/' + dataset_folder + '.pkl', 'rb') as tf:
        graph_set = pickle.load(tf)
    for graph in graph_set:
        edge_list = []
        for line in nx.generate_edgelist(graph, data=False):
            edge_list.append(
                [int(line.split(' ')[0]),
                 int(line.split(' ')[1])])
        dataset_list.append(edge_list)
    return dataset_list, graph_set
Esempio n. 23
0
def create_graph():

    G = nx.read_adjlist("edge_list.adjlist", create_using=nx.DiGraph())
    f = open('edge_list.csv', 'w')
    f.write("Source,Target\n")
    for line in nx.generate_edgelist(G, data=False):
        f.write(line[0])
        f.write(',')
        f.write(line[2])
        f.write('\n')

    f.close()
Esempio n. 24
0
def generateTRAGraph(patient):
    '''
    This function generates a graph per patient representing the traslocations of this patient.
    
    vertex: Chromosomes
    edge: the number of traslocations between each chromosome

    Input:
        patient(string):  The patient id.
    Output:
        graph: networkx format
        edge_list: List with the format:
                    node1 node2 weight    (edge between node1 and node2 with weight weight)
    '''
    patient_path = PATIENTS_PATH + '/' + patient + '.vcf.tsv'

    # Load the patient breaks, and select only the traslocations
    patient_breaks = pd.read_csv(patient_path, sep='\t', index_col=None)

    # patient_breaks['chrom2'] = patient_breaks['chrom2'].map(str)

    only_TRA = patient_breaks.loc[patient_breaks['svclass'] == 'TRA']

    # The crosstab is equivalent to the adjacency matrix, so we use this to calculate it
    ct_tra = pd.crosstab(only_TRA['#chrom1'], only_TRA['chrom2'])

    ct_tra.index = ct_tra.index.map(str)
    adjacency_matrix_connected_only = ct_tra

    aux = pd.DataFrame(0, columns=chromosomes, index=chromosomes)
    aux.index = aux.index.map(str)

    ct_tra = aux.add(ct_tra, fill_value=0)
    aux = None
    # Reorder
    ct_tra = ct_tra.reindex(index=natsorted(ct_tra.index))
    ct_tra = ct_tra[chromosomes]
    # change the values to int
    ct_tra = ct_tra.astype(int)

    # Generate the adjacency matrix
    adjacency_matrix = pd.DataFrame(data=ct_tra.values,
                                    columns=chromosomes,
                                    index=chromosomes)
    # print(adjacency_matrix)
    graph = nx.from_pandas_adjacency(adjacency_matrix)
    graph.to_undirected()

    # Remove isolated vertices
    graph.remove_nodes_from(list(nx.isolates(graph)))

    edge_list = nx.generate_edgelist(graph, data=['weight'])
    return graph, edge_list
Esempio n. 25
0
def netx_to_json(func_graph):
	""" Convert a networkx graph to json """
	func_edge_list = []
	for line in nx.generate_edgelist(func_graph, delimiter=','):
		""" {'source':string, 'target': string, 'weight': integer} """
		edge_entry = {}
		edge = line.replace('\'', '').replace('{weight:', '').replace('}', '').replace(' ', '').split(',')
		edge_entry['source'] = edge[0]
		edge_entry['target'] = edge[1]
		edge_entry['weight'] = edge[2]
		func_edge_list.append(edge_entry)
	return func_edge_list
Esempio n. 26
0
def generate_graphs(nodes, edges, graphType, outputFile):
    file = open(outputFile, "w")
    if graphType == True:
        graph = nx.dense_gnm_random_graph(nodes, edges)
    else:
        graph = nx.gnm_random_graph(nodes, edges, directed=False)

    for u, v in graph.edges():
        graph.add_weighted_edges_from([(u, v, random.randint(0, 100))])

    file.write(str(nodes) + " " + str(edges) + "\n")
    for line in nx.generate_edgelist(graph, data=['weight']):
        file.write(line + "\n")
    def test_init_weightedgraph_wstrings(self):
        """also tests translate_data"""
        adjacency_data = [
            "1    4,10    3,20", "2    3,50", "3    1,20    2,50", "4    1,10"
        ]

        my_graph = ExtendedGraph.init_weightedgraph_wstrings(adjacency_data)

        self.assertEqual(sorted(my_graph.nodes()), [1, 2, 3, 4])
        self.assertEqual(sorted(my_graph.edges()), [(1, 3), (1, 4), (2, 3)])
        self.assertEqual(
            list(nx.generate_edgelist(my_graph)),
            ["1 3 {'weight': 20}", "1 4 {'weight': 10}", "2 3 {'weight': 50}"])
Esempio n. 28
0
def get_graph_to_file(graph, regular):
    lines = nx.generate_edgelist(graph, data=False)
    k = graph.number_of_edges()
    n = graph.number_of_nodes()
    name = ''
    if regular:
        name = f"{k * 2 //n}-regular_graph_with_{n}_vertices.col"
    else:
        name = f"random_{k}_edges_graph_{n}_vertices.col"
    with open(name, 'w+') as f:
        f.write(f"p edge {n} {k}\n")
        for line in lines:
            nodes = line.split(' ')
            f.write("e " + f"{int(nodes[0])+1} {int(nodes[1]) + 1}" + '\n')
def duplicateEdges_test(graphfile):

    G = graphfile

    edges = set()
    duplicates = set()
    for line in nx.generate_edgelist(G):
        key = str(line)
        if key not in edges:
            edges.add(key)
        else:
            duplicates.add(key)

    return len(duplicates)
Esempio n. 30
0
	def create_star(self,node):
		sequence = create_degree_sequence(node, powerlaw_sequence, exponent=2.5)
		graph = nx.configuration_model(sequence)
		loops = graph.selfloop_edges()
		graph = nx.Graph(graph)
		graph.remove_edges_from(loops)
		components = sorted(nx.connected_components(graph), key=len, reverse=True)
		lcc = graph.subgraph(components[0])
		#pos = nx.spring_layout(lcc)
		#nx.draw_networkx(lcc, pos)
		graph = list(nx.generate_edgelist(lcc))
		edges = lcc.edges()
		#print(edges)
		flat = list(sum(edges, ()))
		return edges, max(flat,key=flat.count)
def getSimilarityScore(graph_list):
    simScore = 0
    for x in graph_list:
        graph = nx.read_graphml(x + '.graphml')
        graph_edgelist = list(nx.generate_edgelist(graph, data=False))
        mcode_graph = mcode(graph_edgelist)
        largest_cluster_graph = max(mcode_graph, key=len)
        intersections = len(
            set(largest_cluster_graph).intersection(set(largest_cluster_G)))
        simScore = simScore + (
            (intersections * 2) /
            (len(largest_cluster_graph) + len(largest_cluster_G)))
        print(simScore)
    avgSimScore = simScore / 10
    return avgSimScore
Esempio n. 32
0
def write_input_file(G, path):
    """
    Write a graph to the input file format
    Args:
        G: NetworkX Graph, Graph to write to file
        path: str, path to input file
    Returns:
        None
    """
    with open(path, "w") as fo:
        n = len(G)
        lines = nx.generate_edgelist(G, data=["weight"])
        fo.write(str(n) + "\n")
        fo.writelines("\n".join(lines))
        fo.close()
Esempio n. 33
0
    def find_k_shortest_paths(self, k):
        """ finds k shortest paths using PathLinker.
        This uses a roundabout, verbose method by writing to files,
        and calling PathLinker via the os.
        Assumes all edges have weight 1"""

        assert(self.nx_graph is not None and "should be made by now")

        fn_net = "tmp_net.txt" # a file specifying the network structre
        fn_src_tgt = "tmp_src_tgt.txt" # a file specifying the sources and targets


        with open(fn_net, 'w') as f:
            f.write("#Node1\tNode2\n")
            for line in nx.generate_edgelist(self.nx_graph, data=False):
                nodes = line.strip().split()
                f.write(str(nodes[0]) + "\t" + str(nodes[1]) + "\t1")
                f.write("\n")

        # generate sources and targets by grabing all nodes which have attribute
        both_fragments = [Fragment(string=s) for s,d in self.nx_graph.nodes_iter(data=True) if d['frag'] == 'both']
        sources = list(filter(lambda x: x.is_before(self.deletion), both_fragments))
        targets = list(filter(lambda x: self.deletion.is_before(x), both_fragments))

        with open(fn_src_tgt, 'w') as f:
            f.write("#Node Node type\n")
            for src in sources:
                f.write(str(src) + "\tsource")
                f.write("\n")
            for tgt in targets:
                f.write(str(tgt) + "\ttarget")
                f.write("\n")

        # run PathLinker
        s = "python ../PathLinker/PathLinker.py " + fn_net + " " + fn_src_tgt
        os.system(s)

        # read from file
        fn = "out_k_{}-ranked-edges.txt".format(k)
        with open(fn, 'r') as f:
            for line in f:
                if line[0] == '#':
                    continue
                l = line.split()
                tail = Fragment(l[0])
                head = Fragment(l[1])
                index = l[2]
Esempio n. 34
0
def slurp_pickled_nx(graphpath=None, featurespath=None):
    G = nx.read_gpickle(graphpath)
    Xtr = np.load(featurespath)
    ecount = count()
    enames = ddict(ecount.__next__)
    subs = []
    for line in nx.generate_edgelist(G, data=False):
        i, j, w = parse_space(line)
        if i.isalnum(): i = int(i)
        if j.isalnum(): j = int(j)
        if i == j:
            continue
        subs.append((enames[i], enames[j], w))
    idx = th.from_numpy(np.array(subs, dtype=np.int))
    objects = Gintdict_to_list(dict(enames), G)
    print(f'slurp: objects={len(objects)}, edges={len(idx)}')
    return idx, objects
Esempio n. 35
0
    def pgd_graphlet_counts(self, n_threads=4) -> Dict:
        """
        Return the dictionary of graphlets and their counts - based on Neville's PGD
        :return:
        """
        pgd_path = Path(get_imt_input_directory()).parent / 'src' / 'PGD'
        graphlet_counts = {}

        if 'Linux' in platform.platform() and (pgd_path / 'pgd_0').exists():
            edgelist = '\n'.join(nx.generate_edgelist(self.graph, data=False))
            edgelist += '\nX'  # add the X
            dummy_path = f'{pgd_path}/dummy.txt'

            try:
                bash_script = f'{pgd_path}/pgd_0 -w {n_threads} -f {dummy_path} -c {dummy_path}'

                #pipe = sub.run(bash_script, shell=True, capture_output=True, input=edgelist.encode(), check=True, timeout=30000)
                pipe = sub.run(bash_script,
                               shell=True,
                               capture_output=True,
                               input=edgelist.encode(),
                               check=True)

                output_data = pipe.stdout.decode()

            except sub.TimeoutExpired as e:
                CP.print_blue(f'PGD timeout!{e.stderr}')
                graphlet_counts = {}

            except sub.CalledProcessError as e:
                CP.print_blue(f'PGD error {e.stderr}')
                graphlet_counts = {}
            except Exception as e:
                CP.print_blue(str(e))
                graphlet_counts = {}
            else:  # pgd is successfully run
                for line in output_data.split('\n')[:-1]:  # last line blank
                    graphlet_name, count = map(lambda st: st.strip(),
                                               line.split('='))
                    graphlet_counts[graphlet_name] = int(count)
        else:
            CP.print_red(f'PGD executable not found at {pgd_path}/pgd')
            graphlet_counts = {}
        self.stats['pgd_graphlet_counts'] = graphlet_counts

        return graphlet_counts
    def test_init_weightedgraph_wstrings(self):
        """also tests translate_data"""
        adjacency_data = [
                          "1    4,10    3,20",
                          "2    3,50",
                          "3    1,20    2,50",
                          "4    1,10"
                          ]

        my_graph = ExtendedGraph.init_weightedgraph_wstrings(adjacency_data)

        self.assertEqual(sorted(my_graph.nodes()), [1, 2, 3, 4])
        self.assertEqual(sorted(my_graph.edges()), [(1, 3), (1, 4), (2, 3)])
        self.assertEqual(
                         list(nx.generate_edgelist(my_graph)),
                         ["1 3 {'weight': 20}",
                          "1 4 {'weight': 10}",
                          "2 3 {'weight': 50}"])
Esempio n. 37
0
    def perform_random_walks(self, output_node_corpus_file):

        if not ('number_of_walks' and 'walk_length') in self.params.keys() or self.graph is None:
            raise ValueError("Missing parameter !")

        self.number_of_nodes = self.graph.number_of_nodes()
        self.N = self.number_of_nodes * self.params['number_of_walks']
        self.L = self.params['walk_length']

        initial_time = time.time()
        # Generate a corpus

        if self.params['random_walk'] == "deepwalk":
            if not ('dw_alpha') in self.params.keys():
                raise ValueError("A parameter is missing!")

            # Temporarily generate the edge list
            with open(os.path.join(self.temp_folder,  "graph_deepwalk.edgelist"), 'w') as f:
                for line in nx.generate_edgelist(self.graph, data=False):
                    f.write("{}\n".format(line))

            dwg = deepwalk.load_edgelist(os.path.join(self.temp_folder, "graph_deepwalk.edgelist"), undirected=True)
            self.corpus = deepwalk.build_deepwalk_corpus(G=dwg, num_paths=self.params['number_of_walks'],
                                                         path_length=self.params['walk_length'],
                                                         alpha=self.params['dw_alpha'])

        elif self.params['random_walk'] == "node2vec":

            if not ('n2v_p' and 'n2v_q') in self.params.keys():
                raise ValueError("A missing parameter exists!")

            for edge in self.graph.edges():
                self.graph[edge[0]][edge[1]]['weight'] = 1
            G = node2vec.Graph(nx_G=self.graph, p=self.params['n2v_p'], q=self.params['n2v_q'], is_directed=False)
            G.preprocess_transition_probs()
            self.corpus = G.simulate_walks(num_walks=self.params['number_of_walks'],
                                           walk_length=self.params['walk_length'])

        else:
            raise ValueError("Invalid method name!")

        self.save_corpus(output_node_corpus_file, with_title=False)

        print("The corpus was generated in {:.2f} secs.".format(time.time() - initial_time))
def generate_tests(graphs, filename):

    for i, G in enumerate(graphs):
        # Use only the first 10 graphs
        if i == 5:
            break

        title = filename.format(i)

        # Select the source and target nodes base on their centrality
        nodes = []
        labels = {}
        weights = []
        for node, centrality in nx.betweenness_centrality(G).items():
            nodes.append(node)
            labels[node] = str(node)
            weights.append(1.0 - centrality)

        S, T = random.choices(nodes, weights, k=2)

        # Source and target nodes should be different
        while S == T:
            S, T = random.choices(nodes, weights, k=2)

        lines = list(nx.generate_edgelist(G, data=False))
        lines = ["{} {} {}".format(len(lines), S, T)] + lines
        with open(title + ".txt", "w") as f:
            f.write("\n".join(lines))

        lines = []
        with open(title + "-result.txt".format(i), "w") as f:
            for path in nx.all_simple_paths(G, S, T):
                length = len(path) - 1
                links = " => ".join(map(str, path))
                lines += ["{} # {}".format(length, links)]
            f.write("\n".join(lines))

        fig = plt.figure(figsize=[6, 6])
        ax = plt.gca()
        nx.draw(G, with_label=True, labels=labels)
        fig.suptitle(title + ".png")
        plt.tight_layout(0.9)
        fig.savefig(title + ".png")
Esempio n. 39
0
def draw_graph(self, vertices, edges):

    self.ax.clear()
    self.toolbar.update()

    # TODO: Change the type of graph so only a complete graph is generated
    # NetworkX Graph
    graph = nx.dense_gnm_random_graph(vertices, edges)
    pos = nx.spring_layout(graph)
    # Draw Nodes
    nx.draw_networkx_nodes(graph, pos, ax=self.ax, node_size=700)
    # Draw Edges
    nx.draw_networkx_edges(graph, pos, width=2)
    # Draw labels`
    nx.draw_networkx_labels(graph, pos, font_size=10, font_family='sans-serif')
    # Tight Figure Layout
    plt.tight_layout()
    # Turn off the axis
    plt.axis('off')

    # Save the existing random graph for graph coloring.
    # Can save the nodes as a list of distinct edges. Then call the add_edge
    # function to recreate the exact same graph.
    # Create a file to store the list of edges
    graph_edge_list = open("Random Graph.txt", "w+")
    # Save the graph in a txt file
    total_num_edges = graph.number_of_edges()
    graph_edge_list.write(str(total_num_edges))
    graph_edge_list.write("\n")
    for edge in nx.generate_edgelist(graph, delimiter=' ', data=False):
        graph_edge_list.write(edge)
        graph_edge_list.write("\n")

    # Drawing the figure using the renderer
    self.canvas.draw()
    # Positioning the canvas using pack
    self.canvas.get_tk_widget().pack(side="left", fill="both", expand=True)
    # Print Out some Graph info
    global graph_info
    graph_info = nx.info(graph)

    global nodes
    nodes = graph.nodes()
Esempio n. 40
0
    def makePutativeClusters(tree_dir, bestReciprocalHits):
        BlastParse.logger.info(
            "len(best hits nodes) %d %d" %
            (len(bestReciprocalHits.nodes()), len(bestReciprocalHits.edges())))
        subs = list(
            nx.weakly_connected_component_subgraphs(bestReciprocalHits)
        )  # only need weakly connected because the graph is built so that only reciprocal hits are part of the graph
        count = 1
        orphan_file = tree_dir + "orphan_genes.txt"
        orphans = open(orphan_file, 'w')
        BlastParse.logger.info("len(subs) = %s" % (len(subs)))
        # map child genes to rough clusters and vice versa
        geneToCluster = {}
        graphs = {}
        gene_count = 0

        for s in subs:  # each subgraph is an initial cluster
            s2 = [s]
            for s in s2:
                clusterID = "cluster_" + str(count)
                if len(s.nodes()) > 1:
                    graphs[clusterID] = nx.generate_edgelist(
                        s)  # data=True is default
                else:
                    orphans.write(s.nodes()[0] + "\n")
                for locus in s.nodes():
                    geneToCluster[locus] = clusterID
                count += 1
                gene_count += len(s.nodes())
        orphans.close()
        BlastParse.logger.info("gene count = %d" % (gene_count))
        BlastParse.logger.info("count = %d" % (count))

        with open(tree_dir + "gene_to_cluster.pkl", "w") as f:
            pickle.dump(geneToCluster, f)
        with open(tree_dir + "cluster_graphs.dat", "w") as f:
            for clusterID in graphs:
                f.write(clusterID + "\n")
                for line in graphs[clusterID]:
                    f.write(line + "\n")
                f.write("//\n")
        return 0
def detect_duplicatesEdges(graphfile, head=10, load="graphfile"):

    if load == "graphfile":
        G = nx.read_graphml(str(graphfile))
    elif load == "loaded_Graph":
        G = graphfile
    else:
        print "Invalid load option. Please leave blank and specify a graphfile to read or provide a preloaded graphfile and select the option 'loaded_Graph'."

    infile = str(graphfile).split('_', 1)[0]

    edges = set()
    duplicates = set()
    for line in nx.generate_edgelist(G):
        #print line
        key = str(line)
        if key not in edges:
            edges.add(key)
        else:
            duplicates.add(key)

    if len(duplicates) > 0:
        duplicates = list(duplicates)
        if head < len(duplicates):
            print "DUPLICATES: ", head, " random duplicate values displayed...", '\n'
            for line in duplicates[0:head]:
                print random.choice(duplicates)
            print '\n', (len(duplicates) -
                         head), " duplicate values not displayed..."

        else:
            print "DUPLICATES: ", len(
                duplicates), " random duplicate values displayed...", '\n'
            for line in duplicates:
                print random.choice(duplicates)

        print '\n', "-" * 50, '\n', len(
            duplicates), "total duplicate values found.", '\n'
        return "DUPLICATES FOUND"
    else:
        print '\n', "-" * 50, '\n', "NO DUPLICATES FOUND"
        return "NO DUPLICATES FOUND"
Esempio n. 42
0
def generate(vertices, chance):
    edges = int((vertices * vertices) * chance)
    print "vertices: {}, edges: {}".format(vertices, edges)
    G = nx.gnm_random_graph(vertices, edges)
    for (u, v, w) in G.edges_iter(data=True):
        w["weight"] = random.randint(1, 20) / 20.0
    out = open("{}_vertices_{}_edges".format(vertices, edges), "w")
    source = random.randint(0, vertices)
    dest = source
    while dest == source:
        dest = random.randint(0, vertices)
    out.write("1\n{} {} {} {} 20 100\n".format(vertices, edges, source, dest))
    for line in nx.generate_edgelist(G, data=["weight"]):
        out.write(line + "\n")
    B = set()
    while len(B) < 100:
        B.add(random.randint(0, vertices))
    for b in B:
        out.write(str(b) + "\n")
    out.close()
import networkx as nx


# Choose random graph to generate
G = nx.lollipop_graph(10, 20)

# Print graph to file
f = open("testGraph.dim", "w")
f.write("p edge " + str(G.number_of_nodes()) + " " + str(G.number_of_edges()))
f.write("\n")
for line in nx.generate_edgelist(G, data=False):
    print(line)
    f.write("e " + line + "\n")
Esempio n. 44
0
def print_mcl_input_file(bsr_graph, out_handle):
  """Print an MCL-formatted graph file"""
  for line in nx.generate_edgelist(bsr_graph, delimiter='\t', data=['bsr']):
    out_handle.write(line+'\n')
Esempio n. 45
0
def convertGraphToNet(G, outfile):
  with open(outfile) as f:
    for e in nx.generate_edgelist(G):
      print e
def dmax(G):
	out = "p edge " + str(G.number_of_nodes()) + " " + str(G.number_of_edges()) + "\n"
	for line in nx.generate_edgelist(G, data=False):
		out += "e " + line + "\n"
	return out
def topology():

    if os.path.exists("mininetCode.py"):
        os.system("rm mininetCode.py")

    os.system('echo "from mininet.net import Mininet" >> %s' % outputFileName)
    os.system('echo "from mininet.node import Controller, OVSKernelSwitch" >> %s' % outputFileName)
    os.system('echo "from mininet.cli import CLI" >> %s' % outputFileName)
    os.system('echo "from mininet.log import setLogLevel" >> %s' % outputFileName)
    os.system('echo "from mininet.link import TCLink" >> %s' % outputFileName)

    os.system('echo "\ndef topology():" >> %s' % outputFileName)

    removeNodes = []

    filename = raw_input("Please enter the filename: ")

    net = Mininet(controller=Controller, link=TCLink, switch=OVSKernelSwitch)
    os.system(
        'echo "\n    net = Mininet( controller=Controller, link=TCLink, switch=OVSKernelSwitch )" >> %s\n\n'
        % (outputFileName)
    )

    excludedLine = 0
    i = 0
    k = 1
    j = 0
    node = [[0 for x in xrange(50)] for x in xrange(333300)]
    e1 = open(str(filename), "r")  # read info file
    A = nx.Graph()

    for line in e1:
        count = len(line.strip().split(" "))
        if line.strip().split(" ")[count - 1] == str(26121) or line.strip().split(" ")[count - 1] == str(20121):
            excludedLine += 1
        else:
            while i <= count:
                if i == 0:
                    node[j][i] = 26121
                elif (i > 0) and (node[j][k - 1] != int(line.strip().split(" ")[i - 1])):
                    node[j][k] = int(line.strip().split(" ")[i - 1])
                    A.add_edge(node[j][k - 1], node[j][k])
                    k += 1
                i += 1
            i = 0
            k = 1
            j += 1

    Degree = int(raw_input("Please enter the number of degree which you want to remove: "))

    for x in A.nodes():
        if len(nx.shortest_path(A, source=26121, target=x)) > Degree:
            removeNodes.append(x)

    hosts = raw_input("Please enter the ASN to add host (you can type for multiple: 100,101,102): ")
    hosts = hosts.split(",")

    A.remove_nodes_from(removeNodes)
    asn = [0 for x in xrange(len(A.nodes()))]
    x = 0
    os.system("echo \"\n    print '*** Creating %s nodes ***'\" >> %s" % (len(A.nodes()), outputFileName))

    for switch in A.nodes():
        asn[x] = net.addSwitch("ASN%s" % switch)
        os.system("echo \"    ASN%s = net.addSwitch( 'ASN%s' )\" >> %s" % (switch, switch, outputFileName))
        x += 1

    h = []
    for host in hosts:
        for node in A.nodes():
            if str(host) == str(node):
                os.system("echo \"    h%s = net.addHost( 'h%s' )\" >> %s" % (str(host), str(host), outputFileName))
                A.add_edge(node, str("h" + str(host)))
                h.append(str("h" + str(host)))

    os.system("echo \"\n    c1 = net.addController( 'c1' )\" >> %s" % (outputFileName))
    os.system("echo \"\n    print '*** Creating Links ***'\" >> %s" % (outputFileName))

    for line in nx.generate_edgelist(A, data=False, delimiter=","):
        line = line.split(",")
        hops = 0
        higherHop = 0
        if (line[0][:1] != "h") and (line[1][:1] != "h"):
            if line[0] != 26121:
                distance = len(nx.shortest_path(A, source=26121, target=int(line[0]))) - 1
                higherHop = distance
            if line[1] != 26121:
                if higherHop < len(nx.shortest_path(A, source=26121, target=int(line[1]))) - 1:
                    hops = len(nx.shortest_path(A, source=26121, target=int(line[1]))) - 1
        # Link Configuration
        if hops < 3:
            bw = 1000
        else:
            bw = 100
        delay = str(10 + (hops * 2)) + "ms"

        if line[0][:1] == "h":
            os.system("echo \"    net.addLink('%s','ASN%s')\" >> %s" % (line[0], line[1], outputFileName))
        elif line[1][:1] == "h":
            os.system("echo \"    net.addLink('ASN%s','%s')\" >> %s" % (line[0], line[1], outputFileName))
        else:
            os.system(
                "echo \"    net.addLink('ASN%s','ASN%s', bw=%s, delay='%s')\" >> %s"
                % (line[0], line[1], bw, delay, outputFileName)
            )

    os.system("echo \"\n    print '*** Starting network ***'\" >> %s" % (outputFileName))
    os.system('echo "    net.build()" >> %s' % (outputFileName))
    os.system('echo "    c1.start()\n" >> %s' % (outputFileName))

    for ases in asn:
        os.system('echo "    %s.start( [c1] )" >> %s' % (ases, outputFileName))

    os.system("echo \"\n    print '*** Running CLI ***'\" >> %s" % (outputFileName))
    os.system('echo "    CLI( net )" >> %s' % (outputFileName))

    os.system("echo \"\n    print '*** Stopping network ***'\" >> %s" % (outputFileName))
    os.system('echo "    net.stop()" >> %s' % (outputFileName))

    os.system("echo \"\nif __name__ == '__main__':\" >> %s" % (outputFileName))
    os.system("echo \"    setLogLevel( 'info' )\" >> %s" % (outputFileName))
    os.system('echo "    topology()" >> %s' % (outputFileName))
    edges_with_weight = zip(rows.tolist(), cols.tolist(), weight)

    # Cria um grafo vazio usando NetworkX
    g = nx.Graph()

    # Insere primeiro os vértices nomeados
    set_edges = set(rows.tolist())
    for i in range(0,len(set_edges)):
        g.add_node(i, name=labels.tolist()[i])

    # Insere arestas
    g.add_weighted_edges_from(edges_with_weight)
    # Linka os nomes com seus respectivos vertices

    # Executa o algoritmo de Prim para extrair a MST do grafo
    edge_list = nx.generate_edgelist(g,data=['weight'])
    mst = nx.kruskal_mst(g)

    # Plota resultados, é necessário que seja salvo na mão.
    # Opção de layout de grafo usado foi o Fruchterman & Reingold

    plt.figure(1, figsize=(15,15))		# Cria figura para desenhar grafo: 15 eh a dimensao da imagem
    #nx.draw_spring(mst, node_size=350, font_size=10, edge_width=1, alpha=0.5, arrows=False, with_labels=True)

    # Coordenadas mantém as coordenadas dos vértices do grafo
    coordinates = nx.spring_layout(mst)
    # Salva a primeira imagem
    nx.draw(mst, coordinates, node_size=350, font_size=10, edge_width=1, alpha=0.5, arrows=False, with_labels=True)
    plt.savefig(dataset+'.png')		# Outros formatos: pdf, svg, ...
    plt.show()
Esempio n. 49
0
 def print_edgelist(self):
     assert(self.nx_graph is not None)
     for line in nx.generate_edgelist(self.nx_graph, data=False):
         print(line)
graphs,all_simple_paths = build_graphs(adjacency_matrix,num_row,num_col,num_plane)


#Equivalent number of cells per subset.
cell_dist = []
for i in range(0,num_subsets):
  cell_dist.append(4096)

num_total_cells = sum(cell_dist)

graphs = add_edge_cost(graphs,num_total_cells,global_subset_boundaries,cell_dist,t_u,upc,upbc,t_comm,latency,m_l,num_row,num_col,num_plane)

##Storing all simple paths for each graph.
#all_simple_paths = []
#for graph in graphs:
#  copy_graph = copy(graph)
#  start_node = [x for x in copy_graph.nodes() if copy_graph.in_degree(x) == 0][0]
#  end_node = [x for x in copy_graph.nodes() if copy_graph.out_degree(x) == 0][0]
#  simple_paths = nx.all_simple_paths(graph,start_node,end_node)
#  all_simple_paths.append(simple_paths)


graphs = add_conflict_weights(graphs,all_simple_paths,latency,cell_dist,num_row,num_col,num_plane)

all_graph_time,time,heaviest_paths = compute_solve_time(graphs,cell_dist,t_u,upc,global_subset_boundaries,num_row,num_col,num_plane)

print(all_graph_time)
for ig in range(0,len(graphs)):
  for line in nx.generate_edgelist(graphs[ig],data=True):
    print(line)
  print("\n")
Esempio n. 51
0
  def _monitor_thread(self):
    bdisp = None
    ddisp = None

    freq = self.hz * self.motion_window
    mwin = collections.deque([False] * freq)

    n = 1
    while True:
      fdata = None

      if self._exit:
        return

      try:
        fdata = self._q.get(True, 0.3)
      except:
        continue

      if self.display and bdisp is None:
        ndisp, _ = pxdisplay.create(caption="Normal", width=80)
        bdisp, _ = pxdisplay.create(caption="Average", width=80)
        sdisp, _ = pxdisplay.create(caption="Std Dev", width=80, tmin=0, tmax=0.5)
        ddisp, _ = pxdisplay.create(caption="Deviation", width=80)

      frame = fdata['ir']

      mwin.popleft()
      mwin.append(fdata['movement'])
      if self.motion_override is not None:
        motion = self.motion_override
      else:
        motion = any(mwin)

      self._lock.acquire()

      self._active = []

      g = nx.Graph()

      if n == 1:
        self._background = tuple_to_list(frame)
        self._means = tuple_to_list(frame)
        self._stds = init_arr(0)
        self._stds_post = init_arr()
      else:
        weight = self.nomotion_weight
        use_frame = frame

        # Not currently working
        #if motion:
        #  indeces = min_temps(frame, 5)
        #  scalepx = []
        #
        #  for i, j in indeces:
        #    scalepx.append(self._background[i][j] / frame[i][j])
        #
        #  scale = sum(scalepx) / len(scalepx)
        #  scaled_bg = [[x * scale for x in r] for r in frame]
        #
        #  weight = self.motion_weight
        #  use_frame = scaled_bg
          
        for i in range(self._rows):
          for j in range(self._columns):
            prev = self._background[i][j]
            cur = use_frame[i][j]

            cur_mean = self._means[i][j]
            cur_std = self._stds[i][j]

            if not motion: # TODO: temp fix
              self._background[i][j]   = weight * cur + (1 - weight) * prev

              # maybe exclude these from motion calculations?
              # n doesn't change when in motion, so it'll cause all sort of corrupted results, as they use n?
              self._means[i][j] = cur_mean + (cur - cur_mean) / n
              self._stds[i][j]  = cur_std + (cur - cur_mean) * (cur - self._means[i][j])
              self._stds_post[i][j] = math.sqrt(self._stds[i][j] / (n-1))

            if (cur - self._background[i][j]) > (3 * self._stds_post[i][j]):
              self._active.append((i,j))

              g.add_node((i,j))

              x = [(-1, -1), (-1, 0), (-1, 1), (0, -1)] # Nodes that have already been computed as active
              for ix, jx in x:
                if (i+ix, j+jx) in self._active:
                  g.add_edge((i,j), (i+ix,j+jx))

      active = self._active

      self._num_active = len(self._active)

      components = list(nx.connected_components(g))

      self._connected_graph = g
      self._num_connected = nx.number_connected_components(g)
      self._size_connected = max(len(component) for component in components) if len(components) > 0 else None

      self._lock.release()
    
      active_pix = None

      if self.display:
        ndisp.put({'ir': frame})
        bdisp.put({'ir': self._background})
        sdisp.put({'ir': self._stds_post})

        #print(self._stds_post)

        if n >= 2:
          std = {'ir': init_arr(0)}

          for i, j in active:
            std['ir'][i][j] = frame[i][j]

          ddisp.put(std)
          active_pix = std

      while self.freeze:
        time.sleep(0.5)
        pass

      if self.draw:
        #nx.draw(g)
        #plt.show()

        print('########################')

        print('Edgelist')

        for l in nx.generate_edgelist(g, data=False):
          print(l)

        print('Frame')
        print(frame)

        print('Average')
        print(self._background)

        print('Stddev')
        print(self._stds_post)

        print('Deviation')
        print(active_pix)

        while True:
          pass

      if not motion:
        n += 1
Esempio n. 52
0
def convert(path, output_path, cut_to_n_nodes, max_edges, max_edges_2, voltage):
    # read edge list from file
    g = nx.read_weighted_edgelist(path, nodetype=int)
    # generate some random resistance
    for (x, y) in nx.edges(g):
         g[x][y]['weight'] = random.randint(1, 10)

    # let g be the biggest consistent subgraph (in the best case,
    # the whole graph is consistent)
    # g = max(nx.connected_component_subgraphs(g), key=len)

    # cycles = nx.cycle_basis(g)
    # nodes = [x for cycle in cycles for x in cycle]
    # g.remove_nodes_from([x for x in nx.nodes(g) if x not in nodes])

    x1, x2 = nx.nodes(g)[:2]
    nodes_set = {x1, x2}
    nodes_set_left = {x1, x2}
    i = 2
    while i < cut_to_n_nodes:
        for node in nx.nodes(g)[2:]:
            if node in nodes_set:
                continue

            intersect = set(nx.neighbors(g, node)).intersection(nodes_set_left)
            if len(intersect) >= 2:
                i += 1
                while len(intersect) > 2:
                    g.remove_edge(node, intersect.pop())
                nodes_set.add(node)
                print(node)
                if len(intersect) < max_edges:
                    nodes_set_left.add(node)
                for neighbour in intersect:
                    if len(set(nx.neighbors(g, neighbour)).intersection(nodes_set)) >= max_edges:
                        nodes_set_left.remove(neighbour)
                        for neighbour2 in nx.neighbors(g, neighbour):
                            if neighbour2 not in nodes_set:
                                g.remove_edge(neighbour, neighbour2)
            if i == cut_to_n_nodes:
                break

    unused = [node for node in nx.nodes(g) if node not in nodes_set]
    g.remove_nodes_from(unused)

    # remove excess edges
    for node in nx.nodes(g):
        neighbours = tuple(nx.all_neighbors(g, node))
        overmax = len(neighbours) - max_edges_2
        if overmax > 0:
            i = 0
            for neighbour in neighbours:
                if len(tuple(nx.all_neighbors(g, neighbour))) == 2:
                    continue
                backup = g[node][neighbour]
                g.remove_edge(node, neighbour)
                if not nx.has_path(g, node, neighbour):
                    g.add_edge(node, neighbour, backup)
                else:
                    i += 1
                if i == overmax:
                    break

    # save to file
    lines = [x + "\n" for x in nx.generate_edgelist(g, data=['weight'])]
    o = open(output_path, "w")
    # x1, x2 = nx.nodes(g)[:2]
    o.write(" ".join((str(x1), str(x2), str(voltage))) + "\n")
    o.writelines(lines)
Esempio n. 53
0
    u = int(lineData[0])
    v = int(lineData[1])
    w = float(lineData[2][:-1])
    if w <= maxDistance:
        G.add_edge(u,v,weight = w)
    dataLine = edgeList.readline()
edgeList.close()

# create subgraphs from this graph
subGs = nx.connected_component_subgraphs(G)
msg("The graph contains %d subgraph(s)" %len(subGs))

# Initiate the output edge list
msg("Initializing the output edge file")
outFile = open(outputFN,'w')
outFile.write("FromID,ToID,Cost,Subgraph\n")

# For each subgraph, assign edges in that subgraph with subgraph ID
cnt = 0
for subG in subGs:
    cnt += 1
    # for each edge, add subgraph ID
    for line in nx.generate_edgelist(subG, data=['weight']):
        fromPatch = int(line.split(" ")[0])
        toPatch = int(line.split(" ")[1])
        cost = float(line.split(" ")[2])
        # write to output file
        outFile.write("%d,%d,%s,%d\n" %(fromPatch,toPatch,cost,cnt))

arcpy.CheckInExtension("spatial")
Esempio n. 54
0
import networkx as nx
import networkx.readwrite as rw

g = nx.Graph()
g.add_edge(1,2, weight=3)
g.add_edge(1,3, weight=1)
g.add_edge(2,4, weight=67)
g.add_edge(2,5, weight=1)

with open('edgelist.txt', 'w') as f:
    f.write('\n'.join(list(nx.generate_edgelist(g, data=True))))
def edge_list(graphfile, data_option, stat_option, print_write="pass", for_label="no_label", load="graphfile"):
	
	if load == "graphfile":
		#Load multigraph file
		G=nx.read_graphml(str(graphfile))
	elif load == "loaded_Graph":
		G=graphfile
	else:
		print "Invalid load option. Please leave blank and specify a graphfile to read or provide a preloaded graphfile and select the option 'loaded_Graph'."

	data = data_option
	stat = stat_option.lower()
	print_option = print_write.lower()


	#Print edges (with no data labels)
	if data==False:
		if print_write == "pass":
			pass
		else:
			if print_write == "print":
				for line in nx.generate_edgelist(G, data=False):
					print(line)
					pass
			elif print_write == "write":
				try:
					outfile = 'Edge_List__'+graphfile+".csv"
					f=open(outfile, 'a')
					for line in nx.generate_edgelist(G, data=False):
						delimited_line = line.replace(' ', ',')
						f.write(u'%s\n' % (delimited_line))
				finally:
					f.close()
					pass
			else:
				pass

	#Print edges (with data labels)
	elif data ==True:
		if print_write == "pass":
			pass
		else:
			if for_label=="no_label":
				if print_write == "print":
					for line in nx.generate_edgelist(G):
						print(line)
						pass
				elif print_write == "write":
					try:
						outfile = 'Edge_List__'+graphfile+".csv"
						f=open(outfile, 'a')
						for line in nx.generate_edgelist(G):
							delimited_line = line.replace(' ', ',')
							f.write(u'%s\n' % (delimited_line))
					finally:
						f.close()
						pass
				elif print_write == "w2":
					try:
						outfile = 'Edgelist-W2__'+graphfile+".csv"
						f=open(outfile, 'a')
						for line in nx.generate_edgelist(G):
							delimited_line = line.replace('	', ' ').replace(',', ' ')
							f.write(u'%s\n' % (delimited_line))
					finally:
						f.close()
						pass

			elif for_label!="no_label":
				if print_write == "print":
					for line in nx.generate_edgelist(G, data=[str(for_label)]):
						print(line)
						pass
				elif print_write == "write":
					try:
						outfile = 'Edge_List__'+graphfile+".csv"
						f=open(outfile, 'a')
						for line in nx.generate_edgelist(G, data=[str(for_label)]):
							delimited_line = line.replace(' ', ',')
							f.write(u'%s\n' % (delimited_line))
					finally:
						f.close()
						pass
				else:
					pass

	#Print Stat Option
	if stat=="yes":
		print '\n'"MULTIGRAPH STATISTICS"'\n', '_'*20, '\n', "Nodes: ", G.number_of_nodes(), '\n', "Edges: ", G.size(), '\n', '_'*20, '\n'
	elif stat=="e1":
		print "Edges: ", G.size()
	elif stat=="no":
		pass
	else:
		print "Please input a valid option. Would you like to return the number of edges: 'yes' or 'no'?" 
      faster_path = False
    
    if (faster_path):
      #How much faster it starts solving than the secondary path. 
      delay = weight_sum_path - weight_sum
      #Get the time to solve this node.
      time_to_solve = G[current_node][primary_path[i+1]]['weight']
      delay = time_to_solve - delay
      #Check if delay is positive, then we need to add weight to the secondary graph.
      if (delay > 0):
        #We add this delay to the node 1's solve time in the secondary graph.
        next_node = path[node_position+1]
        G2[current_node][next_node]['weight'] += delay
    else:
      delay = weight_sum - weight_sum_path
      time_to_solve = G2[current_node][path[node_position+1]]['weight']
      delay = time_to_solve - delay
      if (delay > 0):
        next_node = primary_path[i+1]
        G[current_node][next_node]['weight'] += delay
      



for line in nx.generate_edgelist(G,data=True):
  print(line)

print("\n")
print("G2\n")
for line in nx.generate_edgelist(G2,data=True):
  print(line)
Esempio n. 57
0
edgeW = open("F:\Web_Science\cs532-s16\A5\Wedges.txt","a")
f = open("zachary2.txt","r")
g = nx.Graph()

d = np.genfromtxt(f, delimiter=' ')

for i in range(0,34):
    for j in range(0,34):
        if d[i][j]== 0:
            pass
        else:
            g.add_edge(i,j,weight=d[i][j])
esmall =[(u,v) for (u,v,d) in g.edges(data=True) if d['weight'] <=2.0]
emed =[(u,v) for (u,v,d) in g.edges(data=True) if d['weight'] <=4.0]
elarge =[(u,v) for (u,v,d) in g.edges(data=True) if d['weight'] >=5.0]
plt.figure(figsize=(8,8))
pos=nx.spring_layout(g)
nx.draw_networkx_nodes(g,pos,node_size=500)
nx.draw_networkx_edges(g,pos,edgelist=elarge,width=2,edge_color='r')
nx.draw_networkx_edges(g,pos,edgelist=emed,width=2,edge_color='g')
nx.draw_networkx_edges(g,pos,edgelist=esmall,width=2,edge_color='b')
labels={}
for i in range(0,34):
    labels[i] = i
nx.draw_networkx_labels(g,pos,labels,font_size=16)
plt.axis('off')
for line in nx.generate_edgelist(g):
    edgeW.write(line +'\n')
plt.savefig("F:\Web_Science\cs532-s16\A5\kEdges.png")
plt.show()