Esempio n. 1
0
def time_align_visualize(alignments, time, y, namespace='time_align'):
    plt.figure()
    heat = np.flip(alignments + alignments.T + np.eye(alignments.shape[0]),
                   axis=0)
    sns.heatmap(heat, cmap="YlGnBu")
    plt.savefig(namespace + '_heatmap.svg')

    G = nx.from_numpy_matrix(alignments)
    G = nx.maximum_spanning_tree(G)

    pos = {}
    for i in range(len(G.nodes)):
        pos[i] = np.array([time[i], y[i]])

    mst_edges = set(nx.maximum_spanning_tree(G).edges())

    weights = [
        G[u][v]['weight'] if (not (u, v) in mst_edges) else 8
        for u, v in G.edges()
    ]

    plt.figure()
    nx.draw(G, pos, edges=G.edges(), width=10)
    plt.ylim([-1, 1])
    plt.savefig(namespace + '.svg')
Esempio n. 2
0
def getFullGraphs(greenw,
                  edges,
                  wnodes,
                  unitWeights=False,
                  nocolor=False):  #oWordMap
    G = nx.Graph()
    for w in wnodes:
        G.add_node(w)
    for e in edges:  #add all edges, use sum of both weights
        weight = edges[e]
        if weight == 0: continue
        nodes = e.split(esep)
        eid2 = nodes[1] + esep + nodes[0]
        if eid2 in edges:
            weight += edges[eid2]
            edges[eid2] = 0
        edges[e] = 0
        #G.add_edge(oWordMap.get(nodes[0],nodes[0]), oWordMap.get(nodes[1],nodes[1]), weight=weight)
        G.add_edge(nodes[0], nodes[1], weight=1 if unitWeights else weight)
    #keep large graph components
    #Gcomp= sorted(, key=len,reverse=True)
    Gcomp = sorted(nx.connected_component_subgraphs(G), key=len, reverse=True)
    if not len(Gcomp): return None
    Gc = Gcomp[0]
    Gc = nx.maximum_spanning_tree(Gc)
    if len(Gcomp) > 1:
        for g in Gcomp[1:4]:
            if len(g) > 0.1 * len(Gcomp[0]) and len(g) > 10:
                Gc = nx.compose(Gc, nx.maximum_spanning_tree(
                    g))  #keep graph if at least 10% of largest component
    return getStyledGraph(Gc, greenw, wnodes, nocolor=nocolor,
                          tree=True)  #oWordMap
Esempio n. 3
0
    def capture_results(A, X, name):
        store = dict(
            # X=X,
        )

        ### Un-Supervised Metric (knee-finding heuristic) ###
        plt.figure()
        knee, A_thres = all_thres(X, pct_thres=None, plot=True)  # find knee
        plt.savefig(tmp / f'{name}_knee.png')
        ex.add_artifact(tmp / f'{name}_knee.png')

        graph_compare(A, G, A_thres, name, 'knee')

        f_knee = metrics.fbeta_score(A.flatten(), A_thres.flatten(), 1.)
        print(f'{name} - Knee F_1 = {f_knee:.3f}')  # get knee-based fscore

        unsup = dict(
            knee=knee,
            # X_knee = A_thres,
            fscore_knee=f_knee)
        store['unsupervised'] = unsup

        ### Supervised Optimum (Best F1-Score) ###
        p_, r_, t_ = precision_recall_curve(A.flatten(), X.flatten())
        aps_ = average_precision_score(A.flatten(), X.flatten())
        f_ = 2 * p_[:-1] * r_[:-1] / (p_[:-1] + r_[:-1])
        ts_ = t_[np.nanargmax(f_)]  # best threshold for f1-score
        print(f'{name} - Opt. F_1 = {np.nanmax(f_):.3f}'
              )  # get knee-based fscore

        B_thres = np.where(X >= ts_, 1., 0.)
        graph_compare(A, G, B_thres, name, 'f-score')

        sup = dict(
            # X_opt=B_thres,
            precision=p_,
            recall=r_,
            thres=t_,
            fscores=np.where(np.isnan(f_), 0, f_),
            thres_opt=ts_,
            fscore_opt=np.nanmax(f_),
            aps=aps_,
        )
        store['supervised'] = sup

        T = nx.maximum_spanning_tree(G)
        pathfind = nx.to_numpy_array(nx.maximum_spanning_tree(nx.Graph(X)))
        C_thres = np.where(pathfind > 0, 1, 0)
        f_pf = metrics.fbeta_score(
            nx.to_numpy_array(T).flatten(), C_thres.flatten(), 1.)
        graph_compare(A, T, C_thres, name, 'pathfinder')
        pf = dict(
            # X_pf = C_thres,
            fscore_pf=f_pf, )
        store['pathfinder'] = pf
        # pprint.pprint(store)
        return store
Esempio n. 4
0
 def test_prim_maximum_spanning_tree_edges_specify_weight(self):
     G = nx.Graph()
     G.add_edge(1, 2, weight=1, color="red", distance=7)
     G.add_edge(1, 3, weight=30, color="blue", distance=1)
     G.add_edge(2, 3, weight=1, color="green", distance=1)
     G.add_node(13, color="purple")
     G.graph["foo"] = "bar"
     T = nx.maximum_spanning_tree(G, algorithm="prim")
     assert_equal(sorted(T.nodes()), [1, 2, 3, 13])
     assert_equal(sorted(T.edges()), [(1, 2), (1, 3)])
     T = nx.maximum_spanning_tree(G, weight="distance", algorithm="prim")
     assert_equal(sorted(T.edges()), [(1, 2), (1, 3)])
     assert_equal(sorted(T.nodes()), [1, 2, 3, 13])
Esempio n. 5
0
 def test_prim_maximum_spanning_tree_edges_specify_weight(self):
     G = nx.Graph()
     G.add_edge(1, 2, weight=1, color='red', distance=7)
     G.add_edge(1, 3, weight=30, color='blue', distance=1)
     G.add_edge(2, 3, weight=1, color='green', distance=1)
     G.add_node(13, color='purple')
     G.graph['foo'] = 'bar'
     T = nx.maximum_spanning_tree(G, algorithm='prim')
     assert_equal(sorted(T.nodes()), [1, 2, 3, 13])
     assert_equal(sorted(T.edges()), [(1, 2), (1, 3)])
     T = nx.maximum_spanning_tree(G, weight='distance', algorithm='prim')
     assert_equal(sorted(T.edges()), [(1, 2), (1, 3)])
     assert_equal(sorted(T.nodes()), [1, 2, 3, 13])
Esempio n. 6
0
 def test_prim_maximum_spanning_tree_edges_specify_weight(self):
     G = nx.Graph()
     G.add_edge(1, 2, weight=1, color='red', distance=7)
     G.add_edge(1, 3, weight=30, color='blue', distance=1)
     G.add_edge(2, 3, weight=1, color='green', distance=1)
     G.add_node(13, color='purple')
     G.graph['foo'] = 'bar'
     T = nx.maximum_spanning_tree(G, algorithm='prim')
     assert_equal(sorted(T.nodes()), [1, 2, 3, 13])
     assert_equal(sorted(T.edges()), [(1, 2), (1, 3)])
     T = nx.maximum_spanning_tree(G, weight='distance', algorithm='prim')
     assert_equal(sorted(T.edges()), [(1, 2), (1, 3)])
     assert_equal(sorted(T.nodes()), [1, 2, 3, 13])
Esempio n. 7
0
def mstree_plot(A_thres, title=None, ax=None):
    """plot maximum spanning tree with layered edges for viz"""
    if ax is None:
        ax = plt.gca()
    G = nx.from_pandas_adjacency(A_thres, create_using=nx.Graph)
    G = nx.convert_node_labels_to_integers(G, label_attribute='item')
    D = nx.maximum_spanning_tree(G)

    nontree_edges = nx.from_numpy_array(
        nx.to_numpy_array(G) - nx.to_numpy_array(D) > 0, create_using=nx.Graph)
    pos = nx.layout.kamada_kawai_layout(D)
    if title is not None:
        ax.set_title(title)
    draw_G(D,
           pos,
           fp=nontree_edges,
           withlabels=True,
           font_size=8.,
           font_family='serif',
           legend=False,
           ax=ax,
           node_size=20.)

    #     print(f'C_β = {nx.average_clustering(G):.2f}')
    ax.axis('off')
    ax.set_clip_on(False)
Esempio n. 8
0
 def test_kruskal_maximum_spanning_tree_disconnected(self):
     G = nx.Graph()
     G.add_path([1, 2])
     G.add_path([10, 20])
     T = nx.maximum_spanning_tree(G, algorithm="kruskal")
     assert_equal(sorted(map(sorted, T.edges())), [[1, 2], [10, 20]])
     assert_equal(sorted(T.nodes()), [1, 2, 10, 20])
Esempio n. 9
0
 def test_prim_maximum_spanning_tree_disconnected(self):
     G = nx.Graph()
     G.add_edge(1, 2)
     G.add_edge(10, 20)
     T = nx.maximum_spanning_tree(G, algorithm='prim')
     assert_equal(sorted(map(sorted, T.edges())), [[1, 2], [10, 20]])
     assert_equal(sorted(T.nodes()), [1, 2, 10, 20])
Esempio n. 10
0
 def test_prim_maximum_spanning_tree_disconnected(self):
     G = nx.Graph()
     G.add_edge(1, 2)
     G.add_edge(10, 20)
     T = nx.maximum_spanning_tree(G, algorithm='prim')
     assert_equal(sorted(map(sorted, T.edges())), [[1, 2], [10, 20]])
     assert_equal(sorted(T.nodes()), [1, 2, 10, 20])
Esempio n. 11
0
def naive_dij(c):
    all_students = list(range(1, c.students + 1))
    non_home = list(range(1, c.home)) + list(range(c.home + 1, c.v + 1))
    # c.scout(random.choice(non_home), all_students)
    G = c.G

    # for _ in range(100):
    #     u, v = random.choice(list(c.G.edges()))
    #     c.remote(u, v)

    MST = nx.maximum_spanning_tree(G)
    # 找到所有MST的
    # query_student = all_students[:len(all_students)//2]
    query_student = all_students
    query_total = [c.scout(vertex, query_student) for vertex in non_home]
    query_result = []

    # print(non_home)
    # print(c.home)
    for q in query_total:
        witness = 0
        for s in query_student:
            if q[s]:
                witness += 1
        query_result.append(witness)

    # print(query_result)

    # construct the expected bots
    number_of_bots = c.bots
    max_num_index_list = []

    for _ in range(len(query_result)):
        i = query_result.index(max(query_result))
        if i < c.home - 1:
            max_num_index_list.append(i + 1)
            # print("#:", i+1,"  value: ",query_result[i])
        else:
            max_num_index_list.append(i + 2)
        query_result[i] = 0

    # Begin Digstra
    robots_remain = c.bots
    # pred, dist = nx.dijkstra_predecessor_and_distance(G, c.home, cutoff=None, weight='weight')

    # print("Home: ",c.home)
    # print(max_num_index_list)

    for bot_num in max_num_index_list:

        if robots_remain > 0:

            path = nx.dijkstra_path(G, bot_num, c.home)
            # print(path)
            # print("bots remain",robots_remain)
            judge = c.remote(bot_num, path[1])
            if judge > 0:
                for i in range(2, len(path)):
                    c.remote(path[i - 1], path[i])
                robots_remain -= 1
Esempio n. 12
0
def backbone_inf(X, resolution=0.5):
    import networkx as nx
    conn, G = nearest_neighbor(X, k=15)
    groups, n_clust = leiden(conn, resolution=resolution)

    mean_cluster = [[] for x in range(n_clust)]

    for i, cat in enumerate(np.unique(groups)):
        idx = np.where(groups == cat)[0]
        mean_cluster[int(cat)] = np.mean(X[idx, :], axis=0)

    mst = np.zeros((n_clust, n_clust))

    for i in range(n_clust):
        for j in range(n_clust):
            mst[i, j] = np.linalg.norm(np.array(mean_cluster[i]) -
                                       np.array(mean_cluster[j]),
                                       ord=2)

    G = nx.from_numpy_matrix(-mst)
    T = nx.maximum_spanning_tree(G, weight='weight', algorithm='kruskal')
    T = nx.to_numpy_matrix(T)
    # conn is the adj of the MST.

    return groups, mean_cluster, T
Esempio n. 13
0
def DMST(G, dummy_wt=0.1):
    G_copy = G.copy()

    edge_map = dict()
    for e in G_copy.edges(data="weight"):
        edge_map[(e[0], e[1])] = e[2]

    G_copy.add_node("-1")
    for node in G_copy.nodes():
        if str(node) == "-1":
            root = node
    for node in G_copy.nodes():
        if str(node) != "-1":
            G_copy.add_edge(root, node, weight=dummy_wt)

    T = nx.maximum_spanning_tree(G_copy.to_undirected()).to_directed()

    rem = list()
    attr = dict()
    for e in T.edges(data="weight"):
        p1 = (e[0], e[1])
        p2 = (e[1], e[0])
        if p1 not in edge_map:
            rem.append(e)
        elif (p2 not in edge_map) or (edge_map[p1] > edge_map[p2]):
            attr[p1] = {"weight": edge_map[p1]}
        else:
            rem.append(e)

    nx.set_edge_attributes(T, attr)
    for r in rem:
        T.remove_edge(r[0], r[1])
    T.remove_node(root)

    return T
Esempio n. 14
0
 def _generate_graphs(self):
     '''
     Creates the complete graph from the proximity matrix and finds its
     maximum spanning tree.
     '''
     self._complete_graph = nx.from_pandas_adjacency(self._proximity)
     self._maxst = nx.maximum_spanning_tree(self._complete_graph)
Esempio n. 15
0
    def tree_decomp(self):
        clusters = self.clusters
        graph = nx.empty_graph(len(clusters))
        for atom, nei_cls in enumerate(self.atom_cls):
            if len(nei_cls) <= 1: continue
            bonds = [c for c in nei_cls if len(clusters[c]) == 2]
            rings = [c for c in nei_cls
                     if len(clusters[c]) > 4]  #need to change to 2

            if len(nei_cls) > 2 and len(bonds) >= 2:
                clusters.append([atom])
                c2 = len(clusters) - 1
                graph.add_node(c2)
                for c1 in nei_cls:
                    graph.add_edge(c1, c2, weight=100)

            elif len(rings) > 2:  #Bee Hives, len(nei_cls) > 2
                clusters.append([atom])  #temporary value, need to change
                c2 = len(clusters) - 1
                graph.add_node(c2)
                for c1 in nei_cls:
                    graph.add_edge(c1, c2, weight=100)
            else:
                for i, c1 in enumerate(nei_cls):
                    for c2 in nei_cls[i + 1:]:
                        inter = set(clusters[c1]) & set(clusters[c2])
                        graph.add_edge(c1, c2, weight=len(inter))

        n, m = len(graph.nodes), len(graph.edges)
        assert n - m <= 1  #must be connected
        return graph if n - m == 1 else nx.maximum_spanning_tree(graph)
Esempio n. 16
0
    def tree_decomp(self):
        clusters = self.clusters
        graph = nx.empty_graph(len(clusters))
        for atom, nei_cls in enumerate(self.atom_cls):
            if len(nei_cls) <= 1: continue
            inter = set(self.clusters[nei_cls[0]])
            for cid in nei_cls:
                inter = inter & set(self.clusters[cid])
            assert len(inter) >= 1

            if len(nei_cls) > 2 and len(
                    inter) == 1:  # two rings + one bond has problem!
                clusters.append([atom])
                c2 = len(clusters) - 1
                graph.add_node(c2)
                for c1 in nei_cls:
                    graph.add_edge(c1, c2, weight=100)
            else:
                for i, c1 in enumerate(nei_cls):
                    for c2 in nei_cls[i + 1:]:
                        union = set(clusters[c1]) | set(clusters[c2])
                        graph.add_edge(c1, c2, weight=len(union))

        n, m = len(graph.nodes), len(graph.edges)
        assert n - m <= 1  #must be connected
        return graph if n - m == 1 else nx.maximum_spanning_tree(graph)
Esempio n. 17
0
 def test_kruskal_maximum_spanning_tree_disconnected(self):
     G = nx.Graph()
     G.add_path([1, 2])
     G.add_path([10, 20])
     T = nx.maximum_spanning_tree(G, algorithm='kruskal')
     assert_equal(sorted(map(sorted, T.edges())), [[1, 2], [10, 20]])
     assert_equal(sorted(T.nodes()), [1, 2, 10, 20])
Esempio n. 18
0
    def resolve_diamond(self):
        """Resolve relationships that have a diamond graphs.

        This method is a pipline to solve diamond graphs by depending on MST to
        resolve the present cycles and maintains information by copying data from
        the cut ties.
        """

        self.relationships['weight'] = self.merge_cost()

        G = nx.from_pandas_edgelist(self.relationships,
                                    source='parent_entity',
                                    target='child_entity',
                                    edge_attr=['weight'])

        if len(list(nx.cycle_basis(G))) > 0:

            self.resolve_reference()
            G = nx.from_pandas_edgelist(self.relationships,
                                        source='parent_entity',
                                        target='child_entity',
                                        edge_attr=['weight'])

            X = nx.maximum_spanning_tree(G)
            edges = [x for x in G.edges() if x not in X.edges()]

            for edge in edges:
                if edge[0] != edge[1]:
                    self.merge(edge, remove=True)
Esempio n. 19
0
def maxtree(G, conn):

    if sufficient(G):
        J = nx.maximum_spanning_tree(G)
        st.write("#### Maximum tree")
        viz.draw(J, conn, cmap=cmap)
        st.pyplot()
Esempio n. 20
0
def gerani_paper_arrg_to_aht(
    graph: nx.MultiDiGraph,
    max_number_of_nodes: int = 100,
    weight: str = "moi",
    alpha_coefficient: float = 0.5,
) -> nx.Graph:
    logger.info("Generate Aspect Hierarchical Tree based on ARRG")
    aspects_weighted_page_rank = calculate_weighted_page_rank(graph, "weight")
    graph = calculate_moi_by_gerani(
        graph=graph,
        weighted_page_rank=aspects_weighted_page_rank,
        alpha_coefficient=alpha_coefficient,
    )

    graph_flatten = merge_multiedges(graph,
                                     node_attrib_name=weight,
                                     default_node_weight=0)
    sorted_nodes = sorted(
        list(aspects_weighted_page_rank.items()),
        key=lambda node_degree_pair: node_degree_pair[1],
        reverse=True,
    )
    csv_name = "/tmp/gerani_page_ranks.csv"
    pd.DataFrame(sorted_nodes, columns=["aspect", weight]).to_csv(csv_name)
    mlflow.log_artifact(csv_name)
    top_nodes = list(pluck(0, sorted_nodes[:max_number_of_nodes]))
    sub_graph = graph_flatten.subgraph(top_nodes)
    maximum_spanning_tree = nx.maximum_spanning_tree(sub_graph, weight=weight)
    nx.set_node_attributes(maximum_spanning_tree,
                           dict(sub_graph.nodes.items()))
    return maximum_spanning_tree
Esempio n. 21
0
def determine_junctions(g, junction_threshold=100):
    """"
    Determine the backbones of the graph with ambiguous nodes being removed
    """
    gmst = nx.maximum_spanning_tree(g, weight="n")
    junctions = determine_junctions_of_trees(gmst, junction_threshold)
    return junctions
Esempio n. 22
0
def show_network(
    ax,
    net,
    topic_category_map,
    label,
    loc,
    size_lookup,
    color_lookup,
    norm=2000,
    norm_2=1.2,
    layout=nx.kamada_kawai_layout,
    ec="white",
    alpha=0.6,
):
    """
    Plots a network visualisation of a topic netwirk
    """

    new_net = net.copy()
    new_net_2 = nx.maximum_spanning_tree(new_net)

    # Calculate the layout
    pos = layout(new_net_2, center=(0.5, 0.5))
    # Node size
    node_s = list(
        [size_lookup[x]**norm_2 for x in dict(new_net_2.degree).keys()])

    # Node colour
    node_c = []

    for x in new_net_2.nodes:
        if x not in topic_category_map.keys():
            node_c.append("white")
        else:
            if topic_category_map[x] not in color_lookup.keys():
                node_c.append("white")
            else:
                c = color_lookup[topic_category_map[x]]
                node_c.append(c)

    # Draw the network. There is quite a lot of complexity here
    nx.draw_networkx_nodes(
        new_net_2,
        pos,
        node_size=node_s,
        node_color=node_c,
        cmap="tab20c",
        alpha=alpha,
        edgecolors="darkgrey",
        ax=ax,
    )

    edge_w = [e[2]["weight"] / norm for e in new_net_2.edges(data=True)]
    nx.draw_networkx_edges(new_net_2,
                           pos,
                           width=edge_w,
                           edge_color=ec,
                           ax=ax,
                           alpha=alpha)
Esempio n. 23
0
def post_processing_tree(adj):
    import networkx as nx
    # deg = np.sum(adj, axis = 1)
    # norm_adj = 1 / np.sqrt(deg)[:,None] * adj * 1 / np.sqrt(deg)[None,:]
    G = nx.from_numpy_matrix(adj, create_using=nx.Graph)
    T = nx.maximum_spanning_tree(G, weight='weight', algorithm='kruskal')
    T = nx.to_numpy_matrix(T)
    T = np.where(T != 0, 1, 0)
    return T
Esempio n. 24
0
 def test_prim_maximum_spanning_tree_attributes(self):
     G = nx.Graph()
     G.add_edge(1, 2, weight=1, color='red', distance=7)
     G.add_edge(2, 3, weight=1, color='green', distance=2)
     G.add_edge(1, 3, weight=10, color='blue', distance=1)
     G.add_node(13, color='purple')
     G.graph['foo'] = 'bar'
     T = nx.maximum_spanning_tree(G, algorithm='prim')
     assert_equal(T.graph, G.graph)
     assert_equal(T.node[13], G.node[13])
     assert_equal(T.edge[1][2], G.edge[1][2])
Esempio n. 25
0
 def test_prim_maximum_spanning_tree_attributes(self):
     G = nx.Graph()
     G.add_edge(1, 2, weight=1, color='red', distance=7)
     G.add_edge(2, 3, weight=1, color='green', distance=2)
     G.add_edge(1, 3, weight=10, color='blue', distance=1)
     G.add_node(13, color='purple')
     G.graph['foo'] = 'bar'
     T = nx.maximum_spanning_tree(G, algorithm='prim')
     assert_equal(T.graph, G.graph)
     assert_equal(T.node[13], G.node[13])
     assert_equal(T.edge[1][2], G.edge[1][2])
Esempio n. 26
0
 def test_prim_maximum_spanning_tree_attributes(self):
     G = nx.Graph()
     G.add_edge(1, 2, weight=1, color="red", distance=7)
     G.add_edge(2, 3, weight=1, color="green", distance=2)
     G.add_edge(1, 3, weight=10, color="blue", distance=1)
     G.add_node(13, color="purple")
     G.graph["foo"] = "bar"
     T = nx.maximum_spanning_tree(G, algorithm="prim")
     assert_equal(T.graph, G.graph)
     assert_equal(T.node[13], G.node[13])
     assert_equal(T.edge[1][2], G.edge[1][2])
def sample_random_view_tree(views, view0, landmarks):

    G = build_view_graph(views, landmarks)

    for s, t, data in G.edges(data=True):
        data['weight'] = random.random()

    T = nx.maximum_spanning_tree(G)
    minimum_tree = list(nx.dfs_edges(T, source=view0))

    return minimum_tree
Esempio n. 28
0
def get_keywords(G, top, D=None):
    G_tmp = nx.maximum_spanning_tree(G)
    k = min(G.number_of_nodes(), top)
    B = nx.betweenness_centrality(G_tmp, weight='weight')
    D = nx.degree(G, weight='weight') if not D else D
    P = nx.pagerank(G_tmp)
    val_tmp = {i: B[i] * D[i] * (P[i] + 0.0001) for i in G.nodes()}
    return ' '.join([
        i[0]
        for i in sorted(val_tmp.items(), key=lambda x: x[1], reverse=True)[:k]
    ])
def compare_result(gama):
    import glob
    import numpy as np
    import pandas as pd
    files = glob.glob('./financial_institution2/*')
    mdate = []
    mG1 = []
    mG2 = []
    mG3 = []
    mG4 = []

    for k in range(len(files)):
        mdate.append(files[k][-15:-4])
        G = network_from_sinduja_data(k)
        G1 = planar_maximally_filter(G)
        G2 = simplification_minimum_lost_connectivity(G, gama)
        minT = nx.minimum_spanning_tree(G, weight='weight')
        maxT = nx.maximum_spanning_tree(G, weight='weight')
        w1 = [
            weight1 for u1, v1, weight1 in G1.edges(data='weight', default=1)
        ]
        w2 = [
            weight2 for u2, v2, weight2 in G2.edges(data='weight', default=1)
        ]
        w3 = [
            weight3 for u3, v3, weight3 in minT.edges(data='weight', default=1)
        ]
        w4 = [
            weight4 for u4, v4, weight4 in maxT.edges(data='weight', default=1)
        ]
        print len(w1)
        print len(w2)
        mG1.append(np.mean(w1))
        mG2.append(np.mean(w2))
        mG3.append(np.mean(w3))
        mG4.append(np.mean(w4))

    df = pd.DataFrame(
        {
            'date': mdate,
            'PMFG': mG1,
            'minimum_lost': mG2,
            'min_tree': mG3,
            'max_tree': mG4
        },
        columns=['date', 'PMFG', 'minimum_lost', 'min_tree', 'max_tree'])
    df['date'] = pd.to_datetime(df.date)
    df = df.sort_values(by='date')
    #print df.groupby(df.date.dt.year)['PMFG', 'minimum_lost'].transform('mean')

    #df = df.groupby([df.date.dt.strftime('%Y')])['PMFG','minimum_lost','min_tree','max_tree'].mean()
    #df.index.name = 'date'
    #df.reset_index(level=0, inplace=True)
    return df
def ML_spanning_tree(data):
    n = data.shape[1]
    triu = list(zip(*np.triu_indices(n, k=1)))
    scores = score_edges(data)

    G = nx.empty_graph(n)
    for i in range(n * (n - 1) // 2):
        G.add_edge( triu[i][0], triu[i][1], weight=scores[i])
    T = nx.maximum_spanning_tree(G, algorithm="kruskal")

    return Graph(n, dol=nx.to_dict_of_lists(T)), scores
Esempio n. 31
0
def makeG(df_size,df_attr,df_state,price,path):
    # df_size relates to size of node for example it could be power price
    # df_attr relates to the power output
    import numpy as np
    #G=GfromAEMO(df_size) #23/07 
    G=GfromAEMO(df_size)
    G=nx.maximum_spanning_tree(G)
    G=attributes_one(G,df_size.replace([np.inf, -np.inf], np.nan),df_attr,df_state,price)
    G=attributes(G)
    G=attributes_color(G)
    graphout=graph_build_lga(G,path,False)
    return G
Esempio n. 32
0
    def fit(
        self, X: pd.DataFrame, y: pd.Series, *, weights: pd.Series = None
    ) -> "TreeBayesianNetworkClassifier":
        if len(X) <= 0:
            raise ValueError(f"len(X) must be positive, but is {len(X)}")
        if len(y) != len(X):
            raise ValueError(f"len(y) must equal len(X), but is {len(y)}")
        if weights is None:
            weights = pd.Series(np.ones(len(X)))
        if len(weights) != len(X):
            raise ValueError(f"len(weights) must equal len(X), but is {len(weights)}")

        self.classes_ = unique_labels(y)
        self.features_ = np.array(X.columns)

        data = __class__._compose_data(X, y)
        G = nx.Graph()
        N = len(data)

        # add nodes
        for col in data.columns:
            sr = data[col]
            probs = weights.groupby(sr).sum() / weights.sum()
            labels = unique_labels(sr)
            G.add_node(col, probs=probs, labels=labels)

        # add edges
        for i_f1 in range(len(data.columns) - 1):
            for i_f2 in range(i_f1 + 1, len(data.columns)):
                cols = sorted([data.columns[i_f1], data.columns[i_f2]])
                contingency = weighted_contingency_matrix(*data[cols], weights)
                mutual_info = weighted_mutual_info_score(contingency)

                # compute joint probability distribution
                nd = reduce(mul, contingency.shape)  # arity of the ``*cols`` domain
                pseudocount = contingency.sum() / nd  # for Laplace smoothing
                probs = (contingency + pseudocount) / (
                    N + (pseudocount * nd)
                )  # uses Laplace smoothing
                df = pd.DataFrame(probs)
                df.index = G.nodes[cols[0]]["labels"]
                df.columns = G.nodes[cols[-1]]["labels"]
                sr = df.stack()
                sr.index.names = cols

                G.add_edge(*cols, joint_probs=sr, mutual_info=mutual_info)

        # extract maximum spanning tree by mutual information
        T = nx.maximum_spanning_tree(G, weight="mutual_info")
        arborescence = root_tree(T, root=__class__._Y_COL_PREFIX)
        self.network_ = arborescence

        return self
Esempio n. 33
0
 def test_weight_attribute(self):
     G = nx.Graph()
     G.add_edge(0, 1, weight=1, distance=7)
     G.add_edge(0, 2, weight=30, distance=1)
     G.add_edge(1, 2, weight=1, distance=1)
     G.add_node(3)
     T = nx.minimum_spanning_tree(G, algorithm=self.algo, weight='distance')
     assert_nodes_equal(sorted(T), list(range(4)))
     assert_edges_equal(sorted(T.edges()), [(0, 2), (1, 2)])
     T = nx.maximum_spanning_tree(G, algorithm=self.algo, weight='distance')
     assert_nodes_equal(sorted(T), list(range(4)))
     assert_edges_equal(sorted(T.edges()), [(0, 1), (0, 2)])
Esempio n. 34
0
 def test_weight_attribute(self):
     G = nx.Graph()
     G.add_edge(0, 1, weight=1, distance=7)
     G.add_edge(0, 2, weight=30, distance=1)
     G.add_edge(1, 2, weight=1, distance=1)
     G.add_node(3)
     T = nx.minimum_spanning_tree(G, algorithm=self.algo, weight='distance')
     assert_nodes_equal(sorted(T), list(range(4)))
     assert_edges_equal(sorted(T.edges()), [(0, 2), (1, 2)])
     T = nx.maximum_spanning_tree(G, algorithm=self.algo, weight='distance')
     assert_nodes_equal(sorted(T), list(range(4)))
     assert_edges_equal(sorted(T.edges()), [(0, 1), (0, 2)])
Esempio n. 35
0
def build_chow_liu_tree(X, n):
    """
    Build a Chow-Liu tree from the data, X. n is the number of features. The weight on each edge is
    the negative of the mutual information between those features. The tree is returned as a networkx
    object.
    """
    G = nx.Graph()
    for v in range(n):
        G.add_node(v)
        for u in range(v):
            G.add_edge(u, v, weight=calculate_mutual_information(X, u, v))
    T = nx.maximum_spanning_tree(G)
    return T
Esempio n. 36
0
def main():
    data = get_dataset()
    G = nx.Graph()
    nodes = data.columns
    for i in range(len(nodes)):
        for j in range(i + 1, len(nodes)):
            G.add_edge(nodes[i], nodes[j], weight=mi(nodes[i], nodes[j], data))

    T = nx.maximum_spanning_tree(G)
    terminal_nodes = [x for x in T.nodes() if T.degree(x) == 1]
    root = random.choice(terminal_nodes)
    print(root)
    T = nx.bfs_tree(T, root)
Esempio n. 37
0
def main():
    # 1st row: Number of agents;Number of meetings;Number of variables

    # Open file
    inputFilename = 'constraint_graphs/dcop_constraint_graph'
    # inputFilename = 'constraint_graphs/dcop_simple'
    # inputFilename = 'constraint_graphs/DCOP_Problem_10'
    input = open(inputFilename, 'r')

    # Read first line
    [nrAgents, nrMeetings, nrVars] = u.readLine(input)

    # Read agents/variables/constraints
    agents = u.readMeetings(input, nrVars)

    # Read preferences per agent
    agents = u.readPreferences(input, agents, nrAgents)

    # Create graph
    G = nx.Graph()

    # Add agents/nodes
    G = ptree.addNodes(G, agents)

    # Add edges and keep track of back-edges
    [G, back_edges_candidates] = ptree.addEdges(G, agents, nrMeetings)

    # Convert to spanning tree
    T = nx.maximum_spanning_tree(G)
    # T = nx.dfs_successors(G, 0)

    # Create back edges
    T = ptree.addBackEdges(T, back_edges_candidates)

    # Print nodes
    print('----------------ALL NODES----------------')
    # u.printNodes(T)

    layout = graphviz_layout(T, prog="dot")

    edges = T.edges()
    colors = [T[u][v]['color'] for u, v in edges]
    #print(list(nx.bfs_edges(T,3)))
    compute_utils(T, ptree.getLeafNodes(T))

    nx.draw(T, layout, edge_color=colors, with_labels=True)
    plt.show()

    # Print nodes
    print('----------------ALL NODES----------------')
    u.printNodes(T)
Esempio n. 38
0
 def test_kruskal_maximum_spanning_tree_isolate(self):
     G = nx.Graph()
     G.add_nodes_from([1, 2])
     T = nx.maximum_spanning_tree(G, algorithm="kruskal")
     assert_equal(sorted(T.nodes()), [1, 2])
     assert_equal(sorted(T.edges()), [])
Esempio n. 39
0
 def test_prim_maximum_spanning_tree(self):
     T = nx.maximum_spanning_tree(self.G, algorithm='prim')
     assert_equal(T.edges(data=True), self.maximum_spanning_edgelist)
Esempio n. 40
0
 def test_multigraph_keys_tree_max(self):
     G = nx.MultiGraph()
     G.add_edge(0, 1, key="a", weight=2)
     G.add_edge(0, 1, key="b", weight=1)
     T = nx.maximum_spanning_tree(G)
     assert_equal([(0, 1, 2)], list(T.edges(data="weight")))
Esempio n. 41
0
 def test_maximum_spanning_tree(self):
     T = nx.maximum_spanning_tree(self.G, algorithm="kruskal")
     assert_equal(sorted(T.edges(data=True)), self.maximum_spanning_edgelist)
Esempio n. 42
0
 def test_maximum_tree(self):
     T = nx.maximum_spanning_tree(self.G, algorithm=self.algo)
     actual = sorted(T.edges(data=True))
     assert_edges_equal(actual, self.maximum_spanning_edgelist)