class TanhLayer(Layer): """ Layer with `tanh` activation function. Parameters ---------- function_coef : dict Default configurations for sigmoid activation function. There is one value name ``alpha`` (default is ``1``). `alpha` control your function shape. {layer_params} """ function_coef = DictProperty(default={'alpha': 1}) activation_function = tanh
class TanhLayer(Layer): """ The layer with the `tanh` activation function. Parameters ---------- function_coef : dict The default configurations for the sigmoid activation function. There is one available parameter ``alpha`` (defaults to ``1``). Parameter `alpha` controls function shape. {layer_params} """ function_coef = DictProperty(default={'alpha': 1}) activation_function = tanh
class SoftmaxLayer(Layer): """ Layer with softmax activation function. Parameters ---------- function_coef : dict Default configurations for softmax activation function. There is one value name ``temp`` (default is ``1``). Smaller ``temp`` value will make your winner probability closer to ``1``. To big ``temp`` value will make all your probabilities closer to equal values. {layer_params} """ function_coef = DictProperty(default={'temp': 1}) activation_function = softmax
class SoftmaxLayer(Layer): """ The layer with the softmax activation function. Parameters ---------- function_coef : dict The default configurations for the softmax activation function. There is one available parameter ``temp`` (defaults to ``1``). Lower ``temp`` value will make your winner probability closer to ``1``. Higher ``temp`` value will make all probabilities values equal to each other. {layer_params} """ function_coef = DictProperty(default={'temp': 1}) activation_function = softmax
class Layer(BaseLayer): """ Base class for neural network layers. Parameters ---------- function_coef : dict Default settings for activation function. {layer_params} """ function_coef = DictProperty() def __init__(self, *args, **kwargs): super(Layer, self).__init__(*args, **kwargs) if self.function_coef is not None: partial_func = get_partial_for_func(self.activation_function) self.activation_function = partial_func(self.activation_function, **self.function_coef)