Esempio n. 1
0
    def test_batch_norm_storage(self):
        x_train, x_test, y_train, y_test = simple_classification()

        batch_norm = layers.BatchNorm()
        gdnet = algorithms.MinibatchGradientDescent(
            [
                layers.Input(10),
                layers.Relu(5),
                batch_norm,
                layers.Sigmoid(1),
            ],
            batch_size=10,
        )
        gdnet.train(x_train, y_train)

        error_before_save = gdnet.prediction_error(x_test, y_test)
        mean_before_save = batch_norm.running_mean.get_value()
        inv_std_before_save = batch_norm.running_inv_std.get_value()

        with tempfile.NamedTemporaryFile() as temp:
            storage.save(gdnet, temp.name)
            storage.load(gdnet, temp.name)

            error_after_load = gdnet.prediction_error(x_test, y_test)
            mean_after_load = batch_norm.running_mean.get_value()
            inv_std_after_load = batch_norm.running_inv_std.get_value()

            self.assertAlmostEqual(error_before_save, error_after_load)
            np.testing.assert_array_almost_equal(mean_before_save,
                                                 mean_after_load)
            np.testing.assert_array_almost_equal(inv_std_before_save,
                                                 inv_std_after_load)
Esempio n. 2
0
    def test_batch_norm_storage(self):
        x_train, x_test, y_train, y_test = simple_classification()

        batch_norm = layers.BatchNorm()
        gdnet = algorithms.GradientDescent(
            [
                layers.Input(10),
                layers.Relu(5),
                batch_norm,
                layers.Sigmoid(1),
            ],
            batch_size=10,
            verbose=True,  # keep it as `True`
        )
        gdnet.train(x_train, y_train, epochs=5)

        error_before_save = gdnet.prediction_error(x_test, y_test)
        mean_before_save = self.eval(batch_norm.running_mean)
        variance_before_save = self.eval(batch_norm.running_inv_std)

        with tempfile.NamedTemporaryFile() as temp:
            storage.save(gdnet, temp.name)
            storage.load(gdnet, temp.name)

            error_after_load = gdnet.prediction_error(x_test, y_test)
            mean_after_load = self.eval(batch_norm.running_mean)
            variance_after_load = self.eval(batch_norm.running_inv_std)

            self.assertAlmostEqual(error_before_save, error_after_load)
            np.testing.assert_array_almost_equal(mean_before_save,
                                                 mean_after_load)

            np.testing.assert_array_almost_equal(variance_before_save,
                                                 variance_after_load)
Esempio n. 3
0
    def test_simple_storage(self):
        connection = layers.join(
            layers.Input(10),
            layers.Sigmoid(5),
            layers.Sigmoid(2),
        )

        with tempfile.NamedTemporaryFile() as temp:
            storage.save(connection, temp.name)
            temp.file.seek(0)

            filesize_after = os.path.getsize(temp.name)
            self.assertGreater(filesize_after, 0)

            data = pickle.load(temp.file)

            self.assertIn('sigmoid-1', data)
            self.assertIn('sigmoid-2', data)

            self.assertIn('weight', data['sigmoid-1'])
            self.assertIn('bias', data['sigmoid-1'])
            self.assertIn('weight', data['sigmoid-2'])
            self.assertIn('bias', data['sigmoid-2'])

            self.assertEqual(data['sigmoid-1']['weight'].shape, (10, 5))
            self.assertEqual(data['sigmoid-1']['bias'].shape, (5,))
            self.assertEqual(data['sigmoid-2']['weight'].shape, (5, 2))
            self.assertEqual(data['sigmoid-2']['bias'].shape, (2,))
Esempio n. 4
0
    def test_batch_norm_storage(self):
        x_train, x_test, y_train, y_test = simple_classification()

        batch_norm = layers.BatchNorm()
        gdnet = algorithms.MinibatchGradientDescent(
            [
                layers.Input(10),
                layers.Relu(5),
                batch_norm,
                layers.Sigmoid(1),
            ],
            batch_size=10,
        )
        gdnet.train(x_train, y_train)

        error_before_save = gdnet.prediction_error(x_test, y_test)
        mean_before_save = batch_norm.running_mean.get_value()
        inv_std_before_save = batch_norm.running_inv_std.get_value()

        with tempfile.NamedTemporaryFile() as temp:
            storage.save(gdnet, temp.name)
            storage.load(gdnet, temp.name)

            error_after_load = gdnet.prediction_error(x_test, y_test)
            mean_after_load = batch_norm.running_mean.get_value()
            inv_std_after_load = batch_norm.running_inv_std.get_value()

            self.assertAlmostEqual(error_before_save, error_after_load)
            np.testing.assert_array_almost_equal(mean_before_save,
                                                 mean_after_load)
            np.testing.assert_array_almost_equal(inv_std_before_save,
                                                 inv_std_after_load)
Esempio n. 5
0
    def on_epoch_end(network):
        if network.last_epoch in steps:
            print("Saving pre-trained VIN model...")
            storage.save(network, env['pretrained_network_file'])

            new_step = steps[network.last_epoch]
            session = tensorflow_session()
            network.variables.step.load(new_step, session)
Esempio n. 6
0
 def reset_log(self):
     F = open("Logs/Rede3_4-12-8-3/R3_" + str(amostra) + ".txt", "a")
     F.write(str(int(self.distance_car)) + "\n")
     if (self.resetCount >= 120):
         storage.save(
             nn,
             filepath=
             f'Saves/Rede3_4-12-8-3/motorista{amostra}_{CODINOME}_g{self.resetCount}_d{self.maxDistance:.0f}.hdf5'
         )
         sys.exit()
def on_epoch_end(gdnet):
    epoch = gdnet.last_epoch
    errors = gdnet.validation_errors

    if errors.previous() and errors.last() > errors.previous():
        # Load parameters and stop training
        storage.load(gdnet, 'training-epoch-{}.pickle'.format(epoch - 1))
        raise StopTraining("Training has been interrupted")
    else:
        # Save parameters after successful epoch
        storage.save(gdnet, 'training-epoch-{}.pickle'.format(epoch))
Esempio n. 8
0
        def on_epoch_end(network):
            epoch = network.last_epoch
            errors[epoch] = network.prediction_error(x_test, y_test)

            if epoch == 4:
                storage.load(
                    network.connection,
                    os.path.join(tempdir, 'training-epoch-2'))
                raise StopTraining('Stop training process after 4th epoch')
            else:
                storage.save(
                    network.connection,
                    os.path.join(tempdir, 'training-epoch-{}'.format(epoch)))
Esempio n. 9
0
    def test_storage_save_conection_from_network(self):
        network = algorithms.GradientDescent([
            layers.Input(10),
            layers.Sigmoid(5),
            layers.Sigmoid(2),
        ])

        with tempfile.NamedTemporaryFile() as temp:
            storage.save(network, temp.name)
            temp.file.seek(0)

            filesize_after = os.path.getsize(temp.name)
            self.assertGreater(filesize_after, 0)
Esempio n. 10
0
    def test_storage_save_load_save(self):
        connection = layers.join(
            layers.Input(10),
            layers.Sigmoid(5),
            layers.Sigmoid(2),
        )

        with tempfile.NamedTemporaryFile() as temp:
            storage.save(connection, temp.name)
            temp.file.seek(0)

            filesize_first = os.path.getsize(temp.name)

            storage.load(connection, temp.name)

        with tempfile.NamedTemporaryFile() as temp:
            storage.save(connection, temp.name)
            temp.file.seek(0)

            filesize_second = os.path.getsize(temp.name)

        self.assertEqual(filesize_first, filesize_second)
Esempio n. 11
0
    print("Initializing VIN...")
    network = algorithms.RMSProp(
        create_VIN(
            env['input_image_shape'],
            n_hidden_filters=150,
            n_state_filters=10,
            k=env['k'],
        ),

        verbose=True,
        error=loss_function,
        epoch_end_signal=on_epoch_end_from_steps(env['steps']),
        **env['training_options']
    )

    print("Training VIN...")
    network.train(
        (x_train, s1_train, s2_train), y_train,
        (x_test, s1_test, s2_test), y_test,
        epochs=env['epochs'],
    )

    if not os.path.exists(MODELS_DIR):
        os.mkdir(MODELS_DIR)

    print("Saving pre-trained VIN model...")
    storage.save(network, env['pretrained_network_file'])

    print("Evaluating accuracy on test set...")
    evaluate_accuracy(network.predict, x_test, s1_test, s2_test)
Esempio n. 12
0
    if args.use_pretrained:
        if not os.path.exists(CARTPOLE_WEIGHTS):
            raise OSError("Cannot find file with pretrained weights "
                          "(File name: {})".format(CARTPOLE_WEIGHTS))

        print("Loading pretrained weights")
        storage.load(network, CARTPOLE_WEIGHTS)

    else:
        print("Start training")
        train_network(
            env,
            network,
            memory,
            n_games=150,  # Number of games that networks is going to play,
            max_score=200,  # Maximum score that network can achive in the game
            epsilon=0.2,  # Probability to select random action during the game
            gamma=0.99,
        )

        if not os.path.exists(FILES_DIR):
            os.mkdir(FILES_DIR)

        print("Saving parameters")
        storage.save(network, CARTPOLE_WEIGHTS)

    # After the training we can check how network solves the problem
    print("Start playing game")
    play_game(env, network, n_steps=100000)
Esempio n. 13
0
        deeplab,
        error='categorical_crossentropy',
        step=0.00001,
        verbose=True,
        addons=[algorithms.WeightDecay],
        decay_rate=0.0001,
    )

    for i in range(args.epochs):
        print("Epoch #{}".format(i + 1))

        for x_batch, y_batch in training_iterator():
            x_batch = resnet50.predict(x_batch)
            optimizer.train(x_batch, y_batch, epochs=1, summary='inline')

        print("Start validation")
        val_images, val_annotations = next(vaidation_iterator())
        segmentation = deeplab.predict(resnet50.predict(val_images))
        confusion = get_confusion_matrix(val_annotations, segmentation)

        accuracy, miou = segmentation_metrics(confusion)
        print("Val accuracy: {:.3f}".format(accuracy))
        print("Val miou: {:.3f}".format(miou))

        filename = 'deeplab_{:0>3}_{:.3f}_{:.3f}.hdf5'.format(
            i, accuracy, miou)
        filepath = os.path.join(storage_folder, filename)

        print("Saved: {}".format(filepath))
        storage.save(deeplab, filepath)