def __init__(self, position): self.position = position self.rotation = random.random() * 2 * math.pi self.bearing = Vector(math.cos(self.rotation), math.sin(self.rotation)) self.neural_net = NeuralNet(4, 1, 10, 3) self.fitness = 0
def __init__(self, position, usage, speed, angle): self.position = position self.rotation = angle self.bearing = Vector(math.cos(self.rotation), math.sin(self.rotation)) self.neural_net = NeuralNet(5, 1, 10, 1) self.usage = usage self.speed = speed self.reset()
def make_population(size, input_size, output_size, hidden_layer_size=3, numof_hidden_layers=1): population = [] for i in range(size): population.append( NeuralNet(input_size, output_size, hidden_layer_size, numof_hidden_layers)) return population
def train(): neural_network = NeuralNet(row_size, row_size) neural_network.build_layers() (training_data, training_labels, label_mapper) = load_from_dataset('DS', row_size, row_size) #(training_data , training_labels ) = prepare_data('Datasets/DatasetSample0/Images',labels_dictionary,row_size,row_size) neural_network.fit_data(training_data, training_labels, 10, 0.998) neural_network.save_model('StoredModel') return "Finished Fitting/Saving Model"
def toggle(self): if self.toggle_btn.config('relief')[-1] == SUNKEN: self.toggle_btn.config(text="Learning", relief=RAISED) self.neural_net = None else: self.toggle_btn.config(text="Testing", relief=SUNKEN) self.neural_net = NeuralNet( "data.txt", algorithm=self.controller.learning_algorithm, layer_arch=self.controller.architecture, learning_rate=self.controller.learning_rate, max_iter=self.controller.max_iter) self.neural_net.learn()
def the_method(): if request.headers['Content-Type'] == 'text/plain': return "Text Message: " + request.data elif request.headers['Content-Type'] == 'application/json': return "JSON Message: " + json.dumps(request.json) elif request.headers['Content-Type'] == 'application/octet-stream': print(request.data) f = open('./binary', 'wb') f.write(request.data) f.close() return "Binary message written!" else: f = request.files['binarydata'] f.seek(0) my_bytes = f.read() index = 0 matrix = [] row = [] for byte in my_bytes: normalized = (float(byte) - 0) / (255 - 0) row.append(normalized) if (index % row_size == (row_size - 1)): matrix.append(row) row = [] index = index + 1 np_array = np.array([matrix], dtype=np.float64) print(np_array[0].shape) #print("np_array[0]. Type : {} | Value : {}".format(type(np_array[0][0][0]),np_array[0][0][0])) neural_network = NeuralNet(row_size, row_size) neural_network.load_model('StoredModel.modelconfig') arg_max, max_val = neural_network.predict_element(np_array) lb = labels_map[arg_max] print('ArgMax : {} | MaxVal : {} |Label : {}'.format( arg_max, max_val, lb)) result = { 'Confidence': max_val.item(), 'Predicted': arg_max.item(), 'Label': lb } return json.dumps(result)
def __init__(self, rows, cols, brain = None): self.rows, self.cols = rows, cols self.board = np.zeros((rows, cols), dtype = np.uint8) self.board[:, 0] = self.board[:, -1] = 1 self.board[0, :] = self.board[-1, :] = 1 self.board[rows // 2, cols // 2] = 2 self.snake = [Vector(cols // 2, rows // 2)] self.add_food() self.dir = Vector(1, 0) self.score = 0 self.age = 0 self.health = 100 if brain is None: self.brain = NeuralNet(rows * cols + 1, rows * cols // 2, 4) else: self.brain = brain.copy()
import numpy as np import sys from neural import NeuralNet from dataset import get_all_categories_shuffled, numpy_array_from_file, prepare_data labels_dictionary = {'Circle': 0, 'L': 1, 'RightArrow': 2} labels_map = ['Circle', 'L', 'RightArrow'] #Replace with your root folder that holds the dataset of images all_bytes, all_labels = prepare_data("Datasets/DatasetSample0/Images", labels_dictionary, 56, 56) nn = NeuralNet(56, 56) nn.build_layers() nn.fit_data(training_data=all_bytes, training_labels=all_labels, epochs=10, accuracy=0.999) nn.save_model('easter_egg_ahlabikyafraise_') #nn.load_model('easter_egg_ahlabikyafraise_') image_path = sys.argv[1] test_image = numpy_array_from_file(image_path) test_image = test_image / 255 arg_max, prediction_level = nn.predict_element(test_image) print('arg_max : {} which is {} with prediction : {}'.format( arg_max, labels_map[arg_max], prediction_level))
([1, 0, 1, 1, 0, 0], [1]), ([1, 0, 1, 0, 1, 0], [1]), ([1, 1, 0, 0, 1, 1], [1]), ([1, 1, 1, 1, 0, 0], [1]), ([1, 0, 0, 0, 1, 1], [1]), ([1, 0, 0, 0, 1, 0], [0]), ([0, 1, 1, 1, 0, 1], [1]), ([0, 1, 1, 0, 1, 1], [0]), ([0, 0, 0, 1, 1, 0], [0]), ([0, 1, 0, 1, 0, 1], [0]), ([0, 0, 0, 1, 0, 1], [0]), ([0, 1, 1, 0, 1, 1], [0]), ([0, 1, 1, 1, 0, 0], [0]), ] nn = NeuralNet(6, 1, 1) nn.train(rn_training_data) print(nn.get_ih_weights()) print() print(nn.get_ho_weights()) print(nn.evaluate([1, 1, 1, 1, 1, 1])) print(nn.evaluate([0, 0, 0, 0, 0, 0])) print() print(nn.evaluate([1, 0, 0, 0, 0, 0])) # 1 print(nn.evaluate([0, 1, 0, 0, 0, 0])) # 0 print(nn.evaluate([0, 0, 1, 0, 0, 0])) # 0 print(nn.evaluate([0, 0, 0, 1, 0, 0])) # 0 print(nn.evaluate([0, 0, 0, 0, 1, 0])) # 0 print(nn.evaluate([0, 0, 0, 0, 0, 1])) # 0