batch_norm = True dropout = 0. output_bias = True optimizer = tt.optim.Adam(lr=lr) mlp = tt.practical.MLPVanilla( fold_X_train_std.shape[1], [n_nodes for layer_idx in range(n_layers)], fold_X_train_std.shape[1], batch_norm, dropout, output_bias=output_bias) net = nn.Sequential( ResidualBlock(fold_X_train_std.shape[1], mlp), DiagonalScaler(fold_X_train_std.shape[1])) if num_durations > 0: labtrans = NKSDiscrete.label_transform(num_durations) fold_y_train_discrete \ = labtrans.fit_transform(*fold_y_train.T) surv_model = NKSDiscrete(net, optimizer, duration_index=labtrans.cuts) else: surv_model = NKS(net, optimizer) model_filename = \ os.path.join(output_dir, 'models', '%s_%s_exp%d_bs%d_nep%d_nla%d_nno%d_' % (survival_estimator_name, dataset,
fold_X_val_std = transform_features( fold_X_val, transformer) fold_X_train_std = fold_X_train_std.astype('float32') fold_X_val_std = fold_X_val_std.astype('float32') tic = time.time() torch.manual_seed(method_random_seed) np.random.seed(method_random_seed) batch_norm = True dropout = 0. output_bias = False optimizer = tt.optim.Adam(lr=lr) net = nn.Sequential( DiagonalScaler(fold_X_train_std.shape[1])) if num_durations > 0: labtrans = NKSDiscrete.label_transform(num_durations) fold_y_train_discrete \ = labtrans.fit_transform(*fold_y_train.T) surv_model = NKSDiscrete(net, optimizer, duration_index=labtrans.cuts) else: surv_model = NKS(net, optimizer) model_filename = \ os.path.join(output_dir, 'models', '%s_%s_exp%d_bs%d_nep%d_lr%f_nd%d_cv%d.pt' % (survival_estimator_name, dataset,
torch.manual_seed(method_random_seed) np.random.seed(method_random_seed) batch_norm = True dropout = 0.0 output_bias = True mlp = tt.practical.MLPVanilla(X_train_std.shape[1], [n_nodes for layer_idx in range(n_layers)], X_train_std.shape[1], batch_norm, dropout, output_bias=output_bias) net = nn.Sequential(ResidualBlock(X_train_std.shape[1], mlp), DiagonalScaler(X_train_std.shape[1])) optimizer = tt.optim.Adam(lr=lr) if num_durations > 0: labtrans = NKSDiscrete.label_transform(num_durations) y_train_discrete = labtrans.fit_transform(*y_train.T) surv_model = NKSDiscrete(net, optimizer, duration_index=labtrans.cuts) else: surv_model = NKS(net, optimizer) model_filename = \ os.path.join(output_dir, 'models', '%s_%s_exp%d_bs%d_nep%d_nla%d_nno%d_lr%f_nd%d_test.pt' % (survival_estimator_name, dataset, experiment_idx, batch_size, n_epochs, n_layers, n_nodes, lr, num_durations))