reduced_fit_times = {'PCA': [], "RCA": []} reduced_predict_times = {'PCA': [], "RCA": []} # transform stuff, but don't transform the ownership of this file, which is Boyko Todorov's for a in range(num_iter): x_train, x_test, y_train, y_test = data_service. \ load_and_split_data(scale_data=scale_data, transform_data=transform_data, random_slice=random_slice, random_seed=random_seed, dataset=dataset, test_size=test_size) if dataset == 'kdd': y_train, y_test = convert_to_binary_service.convert(y_train, y_test, 11) nn_learner = NNLearner(hidden_layer_sizes=nn_hidden_layer_sizes, max_iter=200, solver=nn_solver, activation=nn_activation, alpha=alpha, learning_rate=nn_learning_rate, learning_rate_init=nn_learning_rate_init) nn_accuracy_score, nn_fit_time, nn_predict_time = nn_learner.fit_predict_score(x_train.copy(), y_train.copy(), x_test.copy(), y_test.copy()) original_accuracies.append(nn_accuracy_score) original_non_reduced_fit_times.append(nn_fit_time) original_non_reduced_predict_times.append(nn_predict_time) print("Iter {0}. Orig score: {1}, fit_time: {2}, predict_time: {3}".format(a, nn_accuracy_score, nn_fit_time, nn_predict_time)) for reduction_algo in reduction_algos: nn_learner = NNLearner(hidden_layer_sizes=nn_hidden_layer_sizes, max_iter=200, solver=nn_solver, activation=nn_activation, alpha=alpha, learning_rate=nn_learning_rate,
dataset = 'breast_cancer' test_size = 0.5 nn_activation = 'relu' alpha = 0.0001 nn_hidden_layer_sizes = (10, ) nn_learning_rate = 'constant' nn_learning_rate_init = 0.01 nn_solver = 'lbfgs' #{'activation': 'relu', 'alpha': 0.0001, 'hidden_layer_sizes': (100,), 'learning_rate_init': 0.01, 'solver': 'lbfgs'} nn_learner = NNLearner(hidden_layer_sizes=nn_hidden_layer_sizes, max_iter=200, solver=nn_solver, activation=nn_activation, alpha=alpha, learning_rate=nn_learning_rate, learning_rate_init=nn_learning_rate_init) x_train, x_test, y_train, y_test = data_service.load_and_split_data( scale_data=scale_data, transform_data=transform_data, random_slice=random_slice, random_seed=random_seed, dataset=dataset, test_size=test_size) nn_accuracy_score, nn_fit_time, nn_predict_time = nn_learner.fit_predict_score( x_train, y_train, x_test, y_test)
from sklearn.multiclass import OneVsRestClassifier dt_learner = DTLearner() dt_learnerOnevsRest = OneVsRestClassifier(dt_learner.estimator) #-------------------------------- nn_hidden_layer_sizes = (100, ) nn_solver = 'lbfgs' nn_activation = 'relu' alpha = 0.0001 # regularization term coefficient nn_learning_rate = 'constant' nn_learning_rate_init = 0.0001 nn_learner = NNLearner(hidden_layer_sizes=nn_hidden_layer_sizes, max_iter=200, solver=nn_solver, activation=nn_activation, alpha=alpha, learning_rate=nn_learning_rate, learning_rate_init=nn_learning_rate_init) nn_learner_non_scaled = NNLearner(hidden_layer_sizes=nn_hidden_layer_sizes, max_iter=200, solver=nn_solver, activation=nn_activation, alpha=alpha, learning_rate=nn_learning_rate, learning_rate_init=nn_learning_rate_init) #------------------------------- n_neighbors = 5 weights = 'distance' algorithm = 'auto'