def sum_up_fig(args):

    fig, ax = plt.subplots(1, figsize=(2, 2))
    plt.subplots_adjust(left=.4, bottom=.2)
    ## SAS
    SAS = []
    for i in range(1, 6):
        args.filename = 'sas' + str(i) + '.zip'
        args2, DATA = get_scan(args)
        mean, std = get_spike_train_similarity(DATA,\
                            args.t0, args.time_span, args.N_target)
        SAS.append(100 * mean)
    ax.bar([0], [np.array(SAS).mean()], yerr=[np.array(SAS).std()])
    ## BS
    BS = []
    for i in range(1, 6):
        args.filename = 'bs' + str(i) + '.zip'
        args2, DATA = get_scan(args)
        mean, std = get_spike_train_similarity(DATA,\
                            args.t0, args.time_span, args.N_target)
        BS.append(100 * mean)
    ax.bar([1], [np.array(BS).mean()], yerr=[np.array(BS).std()])
    set_plot(ax,
             xticks=[0, 1.],
             xticks_labels=['SAS', 'BS'],
             ylabel='spike pattern \n similarity (%)')
    fig.savefig('fig.svg')
    ntwk.show()
Esempio n. 2
0
def plot_sim(filename, ge,
             omf_data=None,
             Umodel_data=None,
             mf_data=None):
    
    ## load file
    data = ntwk.load_dict_from_hdf5(filename)
    
    # ## plot
    fig, AX = ntwk.activity_plots(data,
                                  smooth_population_activity=10,
                                  COLORS=COLORS,
                                  pop_act_log_scale=True)

    if Umodel_data is not None:
        AX[2].plot(Umodel_data['t'],
                   Umodel_data['desired_Vm'], '-', lw=2, color='dimgrey', label='mean-field')

    if mf_data is None:

        mf = ntwk.FastMeanField(data, tstop=6., dt=2.5e-3, tau=20e-3)
        mf.build_TF_func(tf_sim_file='neural_network_dynamics/theory/tf_sim_points.npz')
        X, mVm, sVm = mf.run_single_connectivity_sim(mf.ecMatrix, verbose=True)
        t = np.linspace(0, data['tstop'], X.shape[1])
        for i, label in enumerate(data['REC_POPS']):
            AX[-1].plot(t, 1e-2+X[i,:], '--', lw=1, color=COLORS[i])
            ge.plot(t, 1e3*mVm[i,:], sy=1e3*sVm[i,:], color='k', lw=1, label='mean-field', ax=AX[2+i])
            AX[2+i].plot(t, 1e3*(mVm[i,:]-sVm[i,:]), 'k-', lw=0.5)
            AX[2+i].plot(t, 1e3*(mVm[i,:]+sVm[i,:]), 'k-', lw=0.5)
        # AX[2].plot(mf_data['t'], mf_data['desired_Vm'], 'k--', lw=2, label='U-model')
        # AX[2].legend(frameon=False, loc='best')

        
    if omf_data is None:
        try:
            omf_data = load_dict(filename.replace('ntwk.h5', 'mf.npz'))
        except FileNotFoundError:
            pass
    if omf_data is not None:
        t = np.linspace(0, data['tstop'], len(omf_data['pyrExc']))
        for i, label in enumerate(data['REC_POPS']):
            AX[-1].plot(t, 1e-2+omf_data[label], '-', lw=4, color=COLORS[i], alpha=.5)
            # AX[-1].plot(t, omf_data[label], 'k--')
        
    figM, _, _ = plot_matrix(data)
    
    ntwk.show()
Esempio n. 3
0
    parser.add_argument('-df',
                        '--data_folder',
                        help='Folder for data',
                        default='sparse_vs_balanced/data/')
    parser.add_argument("--filename",
                        '-f',
                        help="filename",
                        type=str,
                        default='data.zip')
    parser.add_argument("-a",
                        "--analyze",
                        help="perform analysis of params space",
                        action="store_true")
    parser.add_argument("-c",
                        "--compare_regimes",
                        help="perform analysis of params space",
                        action="store_true")

    args = parser.parse_args()
    Model = vars(args)

    if args.analyze:
        analyze_scan(Model)
        ntwk.show()
    elif args.compare_regimes:
        compare_two_regimes(Model)
        ntwk.show()
    else:
        run_scan(Model)
def analyze_scan(args, smooth=10):

    PATTERNS, seeds, Model, DATA = get_scan({}, filename=args.filename)

    fig1, ax1 = plt.subplots(1, figsize=(4, 2.5))
    plt.subplots_adjust(bottom=.3, right=.95)
    fig2, ax2 = plt.subplots(1, figsize=(4, 2.5))
    plt.subplots_adjust(bottom=.3, right=.95)
    COLORS = [Brown, Cyan, Pink, Purple, Pink, Grey, Kaki]
    # COLORS = [Cyan, Pink, Brown, Purple, Pink, Grey, Kaki]
    MARKERS = ['o', 'd', 'x']
    SIZES = [5, 3, 6]

    nmax_pre = min([args.Nvis_pre, args.N_aff_stim])
    ax1.fill_between([0, args.time_span], [0, 0], [nmax_pre, nmax_pre],
                     color='k',
                     alpha=.1)
    nmax_post = min([args.Nvis_post, args.N_target])
    ax2.fill_between([0, args.time_span], [0, 0], [nmax_post, nmax_post],
                     color='k',
                     alpha=.1)
    for i, data in enumerate(DATA):
        ii, j = 0, 0
        ## AFFERENT SPIKES
        cond = (data['tRASTER_PRE_in_terms_of_Pre_Pop'][j]>args.t0-args.pre_window) &\
               (data['tRASTER_PRE_in_terms_of_Pre_Pop'][j]<args.t0+args.time_span+args.pre_window) &\
               (data['iRASTER_PRE_in_terms_of_Pre_Pop'][j]<nmax_pre)
        if j == 0:
            ax1.plot(data['tRASTER_PRE_in_terms_of_Pre_Pop'][j][cond] -
                     args.t0,
                     data['iRASTER_PRE_in_terms_of_Pre_Pop'][j][cond] + ii,
                     MARKERS[i],
                     ms=SIZES[i],
                     color=COLORS[i],
                     label='trial ' + str(i + 1))
        else:
            ax1.plot(data['tRASTER_PRE_in_terms_of_Pre_Pop'][j][cond] -
                     args.t0,
                     data['iRASTER_PRE_in_terms_of_Pre_Pop'][j][cond] + ii,
                     MARKERS[i],
                     ms=SIZES[i],
                     color=COLORS[i])
        ## EXCITATORY SPIKES
        cond = (data['tRASTER_RecExc']>args.t0-args.pre_window) & (data['iRASTER_RecExc']<nmax_post) &\
               (data['tRASTER_RecExc']<args.t0+args.time_span+args.pre_window)
        if j == 0:
            ax2.plot(data['tRASTER_RecExc'][cond] - args.t0,
                     data['iRASTER_RecExc'][cond] + ii,
                     MARKERS[i],
                     ms=SIZES[i],
                     color=COLORS[i])
        else:
            ax2.plot(data['tRASTER_RecExc'][cond] - args.t0,
                     data['iRASTER_RecExc'][cond] + ii,
                     MARKERS[i],
                     ms=SIZES[i],
                     color=COLORS[i])

    ax1.plot((-args.pre_window) * np.ones(2), [0, int(nmax_pre / 4) - 1],
             'k-',
             lw=3)
    fig1.text(0.05,
              0.5,
              str(int(nmax_pre / 4)) + ' neurons',
              rotation=90,
              fontsize=14)
    ax2.plot((-args.pre_window) * np.ones(2), [0, int(nmax_post / 4) - 1],
             'k-',
             lw=3)
    fig2.text(0.05,
              0.5,
              str(int(nmax_post / 4)) + ' neurons',
              rotation=90,
              fontsize=14)
    ax1.legend()
    set_plot(ax1, ['bottom'],
             xlabel='time from stim. onset (ms)',
             xlim=[ax1.get_xlim()[0], args.time_span + args.pre_window],
             yticks=[])
    ax1.xaxis.label.set_size(13)
    set_plot(ax2, ['bottom'],
             xlabel='time from stim. onset (ms)',
             xlim=[ax2.get_xlim()[0], args.time_span + args.pre_window],
             yticks=[])
    ax2.xaxis.label.set_size(13)
    put_list_of_figs_to_svg_fig([fig1, fig2],
                                fig_name=args.filename.replace('.zip', '.svg'))
    ntwk.show()