Esempio n. 1
0
def get_scores(config, task, model_path, word_dict_path, label_dict_path, syntactic_dict_path, input_path):
    with Timer('Data loading'):
        print ('Task: {}'.format(task))
        allow_new_words = True
        print ('Allow new words in test data: {}'.format(allow_new_words))

        # Load word and tag dictionary
        word_dict = Dictionary(padding_token=PADDING_TOKEN, unknown_token=UNKNOWN_TOKEN)  # word tokens to Dict
        label_dict, syntactic_dict = Dictionary(), Dictionary()
        word_dict.load(word_dict_path)
        label_dict.load(label_dict_path)
        syntactic_dict.load(syntactic_dict_path)
        data = TaggerData(config, [], [], word_dict, label_dict, None, None)
        data.syntactic_dict = syntactic_dict

        # Load test data.
        if task == 'srl':
            test_sentences, emb_inits, emb_shapes = reader.get_srl_test_data(
                input_path,
                config,
                data.word_dict,
                data.label_dict,
                allow_new_words)
        else:
            test_sentences, emb_inits, emb_shapes = reader.get_postag_test_data(
                input_path,
                config,
                data.word_dict,
                data.label_dict,
                allow_new_words)

        print ('Read {} sentences.'.format(len(test_sentences)))

        # Add pre-trained embeddings for new words in the test data.
        # if allow_new_words:
        data.embedding_shapes = emb_shapes
        data.embeddings = emb_inits
        # Batching.
        test_data = data.get_test_data(test_sentences, batch_size=config.dev_batch_size)

    with Timer('Syntactic Information Extracting'):  # extract the syntactic information from file
        test_dep_trees = SyntacticCONLL()
        test_dep_trees.read_from_file(args.input_dep_trees)
        # generate the syntactic label dict in training corpus
        data.syntactic_dict.accept_new = False
        test_dep_trees.get_syntactic_label_dict(data.syntactic_dict)

    with Timer('Model building and loading'):
        model = BiLSTMTaggerModel(data, config=config, gpu_id=args.gpu)
        model.load(model_path)
        for param in model.parameters():
            print param.size()
        if args.gpu:
            print("Initialize the model with GPU!")
            model = model.cuda()

    with Timer('Running model'):
        scores = []
        model.eval()
        for i, batched_tensor in enumerate(test_data):
            x, y, lengths, weights = batched_tensor
            word_inputs_seqs, predicate_inputs_seqs, syn_label_inputs_seqs, pes, answers, input_lengths, masks, padding_answers = \
                batch_data_variable(test_dep_trees, None, x, y, lengths, weights)

            if args.gpu:
                word_inputs_seqs, predicate_inputs_seqs, syn_label_inputs_seqs, input_lengths, masks, \
                padding_answers = \
                    word_inputs_seqs.cuda(), predicate_inputs_seqs.cuda(), syn_label_inputs_seqs.cuda(), \
                    input_lengths.cuda(), masks.cuda(), padding_answers.cuda()

            sc = model.forward(word_inputs_seqs, predicate_inputs_seqs, syn_label_inputs_seqs, pes, input_lengths)
            sc = sc.data.cpu().numpy() if args.gpu else sc.data.numpy()
            sc = [sc[j] for j in range(sc.shape[0])]
            scores.extend(sc)

    return scores, data, test_sentences, test_data
Esempio n. 2
0
def get_scores(config, task, model_path, word_dict_path, label_dict_path,
               tpf_dict_path, input_path):
    with Timer('Data loading'):
        print('Task: {}'.format(task))
        allow_new_words = True
        print('Allow new words in test data: {}'.format(allow_new_words))

        # Load word and tag dictionary
        word_dict = Dictionary(
            padding_token=PADDING_TOKEN,
            unknown_token=UNKNOWN_TOKEN)  # word tokens to Dict
        label_dict = Dictionary()
        tpf_dict = Dictionary()
        word_dict.load(word_dict_path)
        label_dict.load(label_dict_path)
        tpf_dict.load(tpf_dict_path)
        data = TaggerData(config, [], [], word_dict, label_dict, None, None)
        data.tpf2_dict = tpf_dict

        # Load test data.
        if task == 'srl':
            test_sentences, emb_inits, emb_shapes = reader.get_srl_test_data(
                input_path, config, data.word_dict, data.label_dict,
                allow_new_words)
        else:
            test_sentences, emb_inits, emb_shapes = reader.get_postag_test_data(
                input_path, config, data.word_dict, data.label_dict,
                allow_new_words)

        print('Read {} sentences.'.format(len(test_sentences)))

        # Add pre-trained embeddings for new words in the test data.
        # if allow_new_words:
        data.embedding_shapes = emb_shapes
        data.embeddings = emb_inits
        # Batching.
        test_data = data.get_test_data(test_sentences,
                                       batch_size=config.dev_batch_size)

    with Timer("Get test sentences dict"):
        test_sentences_w_id = []
        for sen in get_srl_sentences(args.input):
            test_sentences_w_id.append(' '.join(sen[1]))
        test_sentences_ids = [int(sen[0][0]) for sen in test_sentences]
        temp = {}
        assert len(test_sentences_w_id) == len(test_sentences_ids)
        for idx, sen in zip(test_sentences_ids, test_sentences_w_id):
            temp[idx] = sen
        test_sentences_w_id = temp

    with Timer("Loading ELMO"):
        test_elmo_hdf5 = hdf5_reader()
        test_elmo_hdf5.read_from_file(args.input_elmo, test_sentences_w_id)

    with Timer('Syntactic Information Extracting'
               ):  # extract the syntactic information from file
        test_dep_trees = SyntacticCONLL()
        test_dep_trees.read_from_file(args.input_dep_trees)

    with Timer("TPF2 generating..."):
        # generate the tree-based position features according the Dependency Tree.
        data.tpf2_dict.accept_new = False
        test_tpf2 = test_dep_trees.get_tpf2_dict(data.test_tensors,
                                                 data.tpf2_dict)
        print("Extract {} test TPF2 features".format(len(test_tpf2)))
        assert len(test_tpf2) == len(data.test_tensors)

    with Timer('Model building and loading'):
        model = BiLSTMTaggerModel(data, config=config, gpu_id=args.gpu)
        model.load(model_path)
        for param in model.parameters():
            print(param.size())
        if args.gpu:
            print("Initialize the model with GPU!")
            model = model.cuda()

    with Timer('Running model'):
        scores = []
        model.eval()
        for i, batched_tensor in enumerate(test_data):
            x, y, lengths, weights = batched_tensor
            word_inputs_seqs, predicate_inputs_seqs, tpf_ids, sentences_ids, answers, input_lengths, masks, padding_answers = \
                batch_data_variable(test_tpf2, x, y, lengths, weights)
            elmo_representations = test_elmo_hdf5.forward(
                sentences_ids,
                word_inputs_seqs.size()[-1], [len(ans) for ans in answers])
            if args.gpu:
                word_inputs_seqs, predicate_inputs_seqs, tpf_ids, input_lengths, masks, padding_answers = \
                    word_inputs_seqs.cuda(), predicate_inputs_seqs.cuda(), tpf_ids.cuda(), input_lengths.cuda(), masks.cuda(), padding_answers.cuda()
                elmo_representations = elmo_representations.cuda()

            sc = model.forward(word_inputs_seqs, predicate_inputs_seqs,
                               tpf_ids, elmo_representations, input_lengths)
            sc = sc.data.cpu().numpy() if args.gpu else sc.data.numpy()
            sc = [sc[j] for j in range(sc.shape[0])]
            scores.extend(sc)

    return scores, data, test_sentences, test_data
Esempio n. 3
0
def train_tagger(args):
    config = configuration.get_config(args.config)
    numpy.random.seed(666)
    torch.manual_seed(666)
    torch.set_printoptions(precision=20)
    ### gpu
    gpu = torch.cuda.is_available()
    if args.gpu and gpu:
        print("GPU available: {}\t GPU ID: {}".format(gpu, args.gpu))
        torch.cuda.manual_seed(666)
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    i = 0
    global_step = 0
    epoch = 0
    train_loss = 0.0

    with Timer('Data loading'):
        vocab_path = args.vocab if args.vocab != '' else None
        label_path = args.labels if args.labels != '' else None
        gold_props_path = args.gold if args.gold != '' else None

        print('Task: {}'.format(args.task))
        if args.task == 'srl':
            # Data and evaluator for SRL.
            data = TaggerData(
                config,
                *reader.get_srl_data(config, args.train, args.dev, vocab_path,
                                     label_path))
            evaluator = SRLEvaluator(data.get_development_data(),
                                     data.label_dict,
                                     gold_props_file=gold_props_path,
                                     use_se_marker=config.use_se_marker,
                                     pred_props_file=None,
                                     word_dict=data.word_dict)
        else:
            print "Not implemented yet!"
            exit()
            # Data and evaluator for PropId.
            data = TaggerData(
                config,
                *reader.get_postag_data(config, args.train, args.dev,
                                        vocab_path, label_path))
            evaluator = PropIdEvaluator(data.get_development_data(),
                                        data.label_dict)

        batched_dev_data = data.get_development_data(
            batch_size=config.dev_batch_size)
        print('Dev data has {} batches.'.format(len(batched_dev_data)))

    with Timer('Syntactic Information Extracting'
               ):  # extract the syntactic information from file
        train_dep_trees = SyntacticCONLL()
        dev_dep_trees = SyntacticCONLL()
        train_dep_trees.read_from_file(args.train_dep_trees)
        dev_dep_trees.read_from_file(args.dev_dep_trees)
        # generate the syntactic label dict in training corpus
        data.syntactic_dict = train_dep_trees.get_syntactic_label_dict()
        data.syntactic_dict.accept_new = False
        dev_dep_trees.get_syntactic_label_dict(data.syntactic_dict)

    with Timer('Preparation'):
        if not os.path.isdir(args.model):
            print('Directory {} does not exist. Creating new.'.format(
                args.model))
            os.makedirs(args.model)
        else:
            if len(os.listdir(args.model)) > 0:
                print ('[WARNING] Log directory {} is not empty, previous checkpoints might be overwritten' \
                    .format(args.model))
        shutil.copyfile(args.config, os.path.join(args.model, 'config'))
        # Save word and label dict to model directory.
        data.word_dict.save(os.path.join(args.model, 'word_dict'))
        data.label_dict.save(os.path.join(args.model, 'label_dict'))
        data.syntactic_dict.save(os.path.join(args.model, 'syn_label_dict'))
        writer = open(os.path.join(args.model, 'checkpoints.tsv'), 'w')
        writer.write(
            'step\tdatetime\tdev_loss\tdev_accuracy\tbest_dev_accuracy\n')

    with Timer('Building model'):
        model = BiLSTMTaggerModel(data, config=config, gpu_id=args.gpu)
        if args.gpu:
            print "BiLSTMTaggerModel initialize with Cuda!"
            model = model.cuda()
            if args.gpu != "" and not torch.cuda.is_available():
                raise Exception("No GPU Found!")
                exit()
        for param in model.parameters():
            print param.size()

    optimizer = torch.optim.Adadelta(
        model.parameters(), lr=1.0,
        rho=0.95)  # initialize the optimizer outside the epoch
    batch_position_encoding = position_encoding_init(
        200, 100)  # 0: root, 1, ...n, n+1: padding | max length 200
    while epoch < config.max_epochs:
        with Timer("Epoch%d" % epoch) as timer:
            model.train()
            train_data = data.get_training_data(include_last_batch=True)
            for batched_tensor in train_data:  # for each batch in the training corpus
                x, y, lengths, weights = batched_tensor
                word_inputs_seqs, predicate_inputs_seqs, syn_label_inputs_seqs, pes, _, input_lengths, masks, padding_answers = \
                    batch_data_variable(train_dep_trees, batch_position_encoding, x, y, lengths, weights)

                if args.gpu:
                    word_inputs_seqs, predicate_inputs_seqs, syn_label_inputs_seqs, input_lengths, masks, \
                        padding_answers = \
                        word_inputs_seqs.cuda(), predicate_inputs_seqs.cuda(), syn_label_inputs_seqs.cuda(), \
                        input_lengths.cuda(), masks.cuda(), padding_answers.cuda()

                optimizer.zero_grad()
                output = model.forward(word_inputs_seqs, predicate_inputs_seqs,
                                       syn_label_inputs_seqs, pes,
                                       input_lengths)
                loss = model.compute_loss(output, padding_answers, masks)
                loss.backward()
                # gradient clipping
                torch.nn.utils.clip_grad_norm(model.parameters(), 1.0)
                optimizer.step()

                train_loss += loss.data  # should be tensor not Variable, avoiding the graph accumulates

                i += 1
                global_step += 1
                if i % 400 == 0:
                    timer.tick("{} training steps, loss={:.3f}".format(
                        i, float(train_loss / i)))

            train_loss = train_loss / i
            print("Epoch {}, steps={}, loss={:.3f}".format(
                epoch, i, float(train_loss)))
            i = 0
            epoch += 1
            train_loss = 0.0
            if epoch % config.checkpoint_every_x_epochs == 0:
                with Timer('Evaluation'):
                    evaluate_tagger(model, batch_position_encoding,
                                    batched_dev_data, dev_dep_trees, evaluator,
                                    writer, global_step)

    # Done. :)
    writer.close()
Esempio n. 4
0
                    data.char_dict, data.label_dict, allow_new_words)
                eval_data = load_eval_data(args.input)

            print('Read {} sentences.'.format(len(test_sentences)))
            # Add pre-trained embeddings for new words in the test data.
            # if allow_new_words:
            data.word_embeddings = emb[0]
            data.head_embeddings = emb[1]
            data.word_embedding_shapes = emb_shapes[0]
            data.head_embedding_shapes = emb_shapes[1]
            # Batching.
            test_data = data.get_test_data(test_sentences,
                                           batch_size=config.dev_batch_size)

        with Timer('Model building and loading'):
            model = BiLSTMTaggerModel(data, config=config, gpu_id=args.gpu)
            model.load(model_path)
            for param in model.parameters():
                print param.size()
            if args.gpu:
                print("Initialize the model with GPU!")
                model = model.cuda()

        with Timer('Running model'):
            dev_loss = 0.0
            srl_predictions = []

            # with torch.no_grad():  # Eval don't need the grad
            model.eval()
            for i, batched_tensor in enumerate(test_data):
                sent_ids, sent_lengths, \
Esempio n. 5
0
def train_tagger(args):
    # get the parse configuration
    config = configuration.get_config(args.config)
    config.span_based = args.span == "span"
    # set random seeds of numpy and torch
    numpy.random.seed(666)
    torch.manual_seed(666)
    # set pytorch print precision
    torch.set_printoptions(precision=20)
    # set the default number of threads
    torch.set_num_threads(4)
    # GPU of pytorch
    gpu = torch.cuda.is_available()
    if args.gpu and gpu:
        print("GPU available? {}\t and GPU ID is : {}".format(gpu, args.gpu))
        # set pytorch.cuda's random seed
        torch.cuda.manual_seed(666)
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    with Timer('Data loading'):
        vocab_path = args.vocab if args.vocab != '' else None
        label_path = args.labels if args.labels != '' else None
        gold_props_path = args.gold if args.gold != '' else None

        print('Task is : {}'.format(args.task))
        assert args.task == 'SRL'
        # Data for SRL.
        data = TaggerData(
            config,
            *reader.get_srl_data(config, args.train, args.dep_trees, args.dev,
                                 vocab_path, label_path))
        # Generate SRL evaluator for Dev data
        """Actually, this evaluator has been abandoned, and the only function is to store the highest accuracy."""
        evaluator = SRLEvaluator(data.get_development_data(),
                                 data.label_dict,
                                 gold_props_file=gold_props_path,
                                 pred_props_file=None,
                                 word_dict=data.word_dict)
        batched_dev_data = data.get_development_data(
            batch_size=config.dev_batch_size)
        print('Dev data has {} batches.'.format(len(batched_dev_data)))

    with Timer('Syntactic Information Extracting'
               ):  # extract the syntactic information from file
        # Data for dep Trees
        train_dep_paths = args.train_dep_trees.split(';')
        dev_dep_paths = args.dev_dep_trees.split(';')
        dep_data_path_set = zip(train_dep_paths, dev_dep_paths)
        dep_treebanks_num = len(train_dep_paths)
        hete_deps = []
        for i in xrange(dep_treebanks_num):
            train_path, dev_path = dep_data_path_set[i]
            train_dep_trees, dev_dep_trees = SyntacticCONLL(), SyntacticCONLL()
            train_dep_trees.read_from_file(train_path)
            dev_dep_trees.read_from_file(dev_path)
            # generate the syntactic label dict in training corpus
            train_dep_trees.get_syntactic_label_dict(data.dep_label_dicts[i])
            dev_dep_trees.get_syntactic_label_dict(data.dep_label_dicts[i])
            ## append
            hete_deps.append((train_dep_trees, dev_dep_trees))

    with Timer('Preparation'):
        if not os.path.isdir(args.model):
            print('Directory {} does not exist. Creating new.'.format(
                args.model))
            os.makedirs(args.model)
        else:
            if len(os.listdir(args.model)) > 0:
                print(
                    '[WARNING] Log directory {} is not empty, previous checkpoints might be overwritten'
                    .format(args.model))
        shutil.copyfile(args.config, os.path.join(args.model, 'config'))
        # Save word and label dict to model directory.
        data.word_dict.save(os.path.join(args.model, 'word_dict'))
        data.head_dict.save(os.path.join(args.model, 'head_dict'))
        data.char_dict.save(os.path.join(args.model, 'char_dict'))
        data.label_dict.save(os.path.join(args.model, 'label_dict'))
        for i in xrange(len(data.dep_label_dicts)):
            data.dep_label_dicts[i].save(
                os.path.join(args.model, 'dep_label_dict' + str(i)))
        writer = open(os.path.join(args.model, 'checkpoints.tsv'), 'w')
        writer.write(
            'step\tdatetime\tdev_loss\tdev_accuracy\tbest_dev_accuracy\n')

    with Timer('Building NN model'):
        model = BiLSTMTaggerModel(data, config=config, gpu_id=args.gpu)
        if args.gpu:
            print "BiLSTMTaggerModel initialize with GPU!"
            model = model.to(device)
            if args.gpu != "" and not torch.cuda.is_available():
                raise Exception("No GPU Found!")
                exit()
        for name, param in model.named_parameters(
        ):  # print pytorch model parameters and the corresponding names
            print name, param.size()

    i, global_step, epoch, train_loss = 0, 0, 0, 0.0
    parameters = filter(lambda p: p.requires_grad, model.parameters())
    last_lr = 0.001
    no_more_better_performance = 0
    optimizer = torch.optim.Adam(
        parameters, lr=last_lr)  # initialize the model parameter optimizer
    max_steps = int(config.max_steps)
    while global_step <= max_steps:  # epoch < config.max_epochs
        initial_time = time.time()
        with Timer("Epoch%d" % epoch) as timer:
            model.train()
            dep_train_data = data.get_dep_training_data(
                include_last_batch=True)
            train_data = data.get_training_data(include_last_batch=True)
            mixed_data = data.mix_training_data(train_data, dep_train_data)
            for batched_tensor, batched_dep_tensor in mixed_data:  # for each batch in the training corpus
                sent_ids, sent_lengths, \
                word_indexes, head_indexes, char_indexes, \
                predicate_indexes, arg_starts, arg_ends, arg_labels, srl_lens,\
                gold_predicates, num_gold_predicates = batched_tensor
                hete_dep_trees = get_hete_dep_trees_info(
                    hete_deps, sent_ids, sent_lengths)

                if args.gpu:
                    word_indexes, head_indexes, char_indexes,\
                        predicate_indexes, arg_starts, arg_ends, arg_labels, srl_lens = \
                        word_indexes.cuda(), head_indexes.cuda(), char_indexes.cuda(), predicate_indexes.cuda(), arg_starts.cuda(), \
                        arg_ends.cuda(), arg_labels.cuda(), srl_lens.cuda()  # gold_predicates.cuda(), num_gold_predicates.cuda()

                optimizer.zero_grad()
                predicated_dict, srl_loss = model.forward(
                    sent_lengths,
                    word_indexes,
                    head_indexes,
                    char_indexes, (predicate_indexes, arg_starts, arg_ends,
                                   arg_labels, srl_lens),
                    (gold_predicates, num_gold_predicates),
                    tree_gru_input=hete_dep_trees)
                srl_loss.backward()

                # gradient clipping
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
                optimizer.step()
                # dep forward
                dep_losses = []
                for ith, a_batched_dep_tensor in enumerate(batched_dep_tensor):
                    word_indexes, char_indexes, mask, lengths, heads, labels = a_batched_dep_tensor
                    if args.gpu:
                        word_indexes, char_indexes = word_indexes.cuda(
                        ), char_indexes.cuda()
                    dep_loss = model.forward(lengths, word_indexes, None,
                                             char_indexes, None, None, None,
                                             (ith, heads, labels))
                    dep_losses.append(dep_loss.detach())
                    optimizer.zero_grad()
                    dep_loss.backward()
                    torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
                    optimizer.step()

                loss = srl_loss.detach() + sum(dep_losses)
                train_loss += float(
                    loss.detach()
                )  # should be tensor not Variable, avoiding the graph accumulates

                i += 1
                global_step += 1
                if global_step % 100 == 0:
                    last_lr = adjust_learning_rate(optimizer, last_lr)
                if i % 250 == 0:
                    total_time = time.time() - initial_time
                    timer.tick(
                        "{} training steps, loss={:.3f}, steps/s={:.2f}".
                        format(global_step, float(train_loss / i),
                               float(global_step / total_time)))
                    train_loss = 0.0
                    i = 0

            train_loss = train_loss / i
            print("Epoch {}, steps={}, loss={:.3f}".format(
                epoch, i, float(train_loss)))

            i = 0
            epoch += 1
            train_loss = 0.0
            if epoch % config.checkpoint_every_x_epochs == 0:
                with Timer('Evaluation'):
                    evaluate_tagger(model, batched_dev_data, hete_deps,
                                    data.eval_data, data.label_dict, config,
                                    evaluator, writer, global_step)
                if evaluator.has_best is True:
                    no_more_better_performance = 0
                else:
                    no_more_better_performance += 1
                    if no_more_better_performance >= 200:
                        print(
                            "no more better performance since the past 200 epochs!"
                        )
                        exit()

    # Done. :)
    writer.close()
Esempio n. 6
0
def train_tagger(args):
  config = configuration.get_config(args.config)
  numpy.random.seed(666)
  torch.manual_seed(666)
  torch.cuda.manual_seed(666)
  ### gpu
  gpu = torch.cuda.is_available()
  print("GPU available: ", gpu)

  i = 0
  global_step = 0
  epoch = 0
  train_loss = 0.0
  
  with Timer('Data loading'):
    vocab_path = args.vocab if args.vocab != '' else None
    label_path = args.labels if args.labels != '' else None
    gold_props_path = args.gold if args.gold != '' else None

    print ('Task: {}'.format(args.task))
    if args.task == 'srl':
      # Data and evaluator for SRL.
      data = TaggerData(config,
                        *reader.get_srl_data(config, args.train, args.dev, vocab_path, label_path))
      evaluator = SRLEvaluator(data.get_development_data(),
                               data.label_dict,
                               gold_props_file=gold_props_path,
                               use_se_marker=config.use_se_marker,
                               pred_props_file=None,
                               word_dict=data.word_dict)
    else:
      # Data and evaluator for PropId.
      data = TaggerData(config,
                        *reader.get_postag_data(config, args.train, args.dev, vocab_path, label_path))
      evaluator = PropIdEvaluator(data.get_development_data(),
                                  data.label_dict)

    batched_dev_data = data.get_development_data(batch_size=config.dev_batch_size)
    print ('Dev data has {} batches.'.format(len(batched_dev_data)))
  
  with Timer('Preparation'):
    if not os.path.isdir(args.model):
      print ('Directory {} does not exist. Creating new.'.format(args.model))
      os.makedirs(args.model)
    else:
      if len(os.listdir(args.model)) > 0:
        print ('[WARNING] Log directory {} is not empty, previous checkpoints might be overwritten'
             .format(args.model))
    shutil.copyfile(args.config, os.path.join(args.model, 'config'))
    # Save word and label dict to model directory.
    data.word_dict.save(os.path.join(args.model, 'word_dict'))
    data.label_dict.save(os.path.join(args.model, 'label_dict'))
    writer = open(os.path.join(args.model, 'checkpoints.tsv'), 'w')
    writer.write('step\tdatetime\tdev_loss\tdev_accuracy\tbest_dev_accuracy\n')

  with Timer('Building model'):
    model = BiLSTMTaggerModel(data, config=config, gpu_id=args.gpu)
    if args.gpu:
        print "Use Cuda!"
        model = model.cuda()
    if args.gpu != "" and not torch.cuda.is_available():
        raise Exception("No GPU Found!")
        exit()
    for param in model.parameters():
        print param.size()
    """for param in model.params:
      print param, param.name, param.shape.eval()
    loss_function = model.get_loss_function()
    eval_function = model.get_eval_function()"""

  while epoch < config.max_epochs:
    with Timer("Epoch%d" % epoch) as timer:
      train_data = data.get_training_data(include_last_batch=True)
      model.bilstm.dropout = 0.1
      for batched_tensor in train_data:  # for each batch in the training corpus
        x, y, _, weights = batched_tensor

        batch_input_lengths = ([sentence_x.shape[0] for sentence_x in x])
        max_length = max(batch_input_lengths)
        # padding
        # input = [numpy.pad(sentence_x, (0, max_length - sentence_x.shape[0]), 'constant') for sentence_x in x]
        word_input = [numpy.pad(sentence_x[:, 0], (0, max_length - sentence_x.shape[0]), 'constant') \
                 for sentence_x in x]  # padding
        predicate_input = [numpy.pad(sentence_x[:, 1], (0, max_length - sentence_x.shape[0]), 'constant') \
                      for sentence_x in x]  # padding
        word_input, predicate_input = numpy.vstack(word_input), numpy.vstack(predicate_input)

        # numpy batch input to Variable
        word_input_seqs = torch.autograd.Variable(torch.from_numpy(word_input.astype('int64')).long())
        predicate_input_seqs = torch.autograd.Variable(torch.from_numpy(predicate_input.astype('int64')).long())

        # First: order the batch by decreasing sequence length
        input_lengths = torch.LongTensor(batch_input_lengths)
        input_lengths, perm_idx = input_lengths.sort(0, descending=True)
        word_input_seqs = word_input_seqs[perm_idx]
        predicate_input_seqs = predicate_input_seqs[perm_idx]
        answer = [None] * len(x)  # resort the answer according to the input
        count = 0
        list_y = list(y)
        for (i, ans) in zip(perm_idx, list_y):
            answer[count] = list_y[i]
            count += 1
        answer = numpy.concatenate(answer)
        answer = torch.autograd.Variable(torch.from_numpy(answer).type(torch.LongTensor))
        answer = answer.view(-1)

        # print answer, answer.size()
        # Then pack the sequences
        # packed_input = torch.nn.utils.rnn.pack_padded_sequence(input_seqs, input_lengths.numpy(), batch_first=True)
        # packed_input = packed_input.cuda() if args.gpu else packed_input
        if args.gpu:
            word_input_seqs, predicate_input_seqs, input_lengths, perm_idx =\
                word_input_seqs.cuda(), predicate_input_seqs.cuda(), input_lengths.cuda(), perm_idx.cuda()
            answer = answer.cuda()
        model.zero_grad()
        output = model.forward(word_input_seqs, predicate_input_seqs, input_lengths, perm_idx, len(x))  # (batch input, batch size)
        loss = model.loss(output, answer)
        loss.backward()
        # gradient clipping
        # torch.nn.utils.clip_grad_norm(model.parameters(), 1.0)
        model.optimizer = torch.optim.Adadelta(model.parameters(), rho=0.95)
        model.optimizer.step()

        train_loss += loss
        i += 1
        global_step += 1

        if i % 400 == 0:
          timer.tick("{} training steps, loss={:.3f}".format(i, float(train_loss / i)))
        
    train_loss = train_loss / i
    print("Epoch {}, steps={}, loss={:.3f}".format(epoch, i, float(train_loss)))
    i = 0
    epoch += 1
    train_loss = 0.0
    if epoch % config.checkpoint_every_x_epochs == 0:
      with Timer('Evaluation'):
        evaluate_tagger(model, batched_dev_data, evaluator, writer, global_step)

  # Done. :)
  writer.close()