def log_line(image, model, t): imagen = ImageCategories(model) td = t if not type(t) == dict: td = { int(i): 1 for i in t } else: td = { int(i): v for (i, v) in t.iteritems() } nd = { imagen.name(i): v for (i, v) in td.iteritems() } nld = sorted(nd.items(), key=lambda x: -x[1]) row = [ str(e) for l in nld for e in l ] row = [ image, model ] + row return ','.join(row) + "\n"
#!/usr/bin/env python from nltk.corpus import wordnet as wn from neuralgae import ImageCategories OUTFILE = "definitions_places.txt" inet = ImageCategories("places") def find_synsets(w): ss = wn.synsets(w) if ss: return ss ss = [] ws = w.split("_") for w1 in ws: ss1 = wn.synsets(w1) if ss1: ss += ss1 return ss with open(OUTFILE, "w") as f: for i in range(0, 204): w = inet.name(i) w_ = w.replace(" ", "_") ss = find_synsets(w_) if not ss:
def class_names(model, t): imagen = ImageCategories(model) return ', '.join([imagen.name(c) for c in t])
#!/usr/bin/env python from nltk.corpus import wordnet as wn from neuralgae import ImageCategories OUTFILE = 'definitions_places.txt' inet = ImageCategories('places') def find_synsets(w): ss = wn.synsets(w) if ss: return ss ss = [] ws = w.split('_') for w1 in ws: ss1 = wn.synsets(w1) if ss1: ss += ss1 return ss with open(OUTFILE, 'w') as f: for i in range(0, 204): w = inet.name(i) w_ = w.replace(' ', '_') ss = find_synsets(w_) if not ss: print "ERR: %d %s not found" % (i, w)