Esempio n. 1
0
    def execute(self,
                dataset: Dataset,
                execution_scripts,
                train=False,
                compute_losses=True,
                summaries=True,
                batch_size=None,
                log_progress: int = 0) -> List[ExecutionResult]:
        if batch_size is None:
            batch_size = len(dataset)
        batched_dataset = dataset.batch_dataset(batch_size)
        last_log_time = time.process_time()

        batch_results = [
            [] for _ in execution_scripts]  # type: List[List[ExecutionResult]]
        for batch_id, batch in enumerate(batched_dataset):
            if 0 < log_progress < time.process_time() - last_log_time:
                log("Processed {} examples.".format(batch_id * batch_size))
                last_log_time = time.process_time()
            executables = [s.get_executable(compute_losses=compute_losses,
                                            summaries=summaries,
                                            num_sessions=len(self.sessions))
                           for s in execution_scripts]

            while not all(ex.result is not None for ex in executables):
                self._run_executables(batch, executables, train)

            for script_list, executable in zip(batch_results, executables):
                script_list.append(executable.result)

        collected_results = []  # type: List[ExecutionResult]
        for result_list in batch_results:
            collected_results.append(reduce_execution_results(result_list))

        return collected_results
Esempio n. 2
0
    def execute(self,
                dataset: Dataset,
                execution_scripts,
                train=False,
                compute_losses=True,
                summaries=True,
                batch_size=None) -> List[ExecutionResult]:
        if batch_size is None:
            batch_size = len(dataset)
        batched_dataset = dataset.batch_dataset(batch_size)

        batch_results = [[] for _ in execution_scripts
                         ]  # type: List[List[ExecutionResult]]
        for batch in batched_dataset:
            executables = [
                s.get_executable(compute_losses=compute_losses,
                                 summaries=summaries)
                for s in execution_scripts
            ]
            while not all(ex.result is not None for ex in executables):
                all_feedables = set()  # type: Set[Any]
                # type: Dict[Executable, tf.Tensor]
                all_tensors_to_execute = {}
                additional_feed_dicts = []
                tensor_list_lengths = []  # type: List[int]

                for executable in executables:
                    if executable.result is None:
                        (feedables, tensors_to_execute,
                         add_feed_dict) = executable.next_to_execute()
                        all_feedables = all_feedables.union(feedables)
                        all_tensors_to_execute[executable] = tensors_to_execute
                        additional_feed_dicts.append(add_feed_dict)
                        tensor_list_lengths.append(len(tensors_to_execute))
                    else:
                        tensor_list_lengths.append(0)

                feed_dict = _feed_dicts(batch, all_feedables, train=train)
                for fdict in additional_feed_dicts:
                    feed_dict.update(fdict)

                session_results = [
                    sess.run(all_tensors_to_execute, feed_dict=feed_dict)
                    for sess in self.sessions
                ]

                for executable in executables:
                    if executable.result is None:
                        executable.collect_results(
                            [res[executable] for res in session_results])

            for script_list, executable in zip(batch_results, executables):
                script_list.append(executable.result)

        collected_results = []  # type: List[ExecutionResult]
        for result_list in batch_results:
            collected_results.append(reduce_execution_results(result_list))

        return collected_results
Esempio n. 3
0
def training_loop(tf_manager: TensorFlowManager,
                  epochs: int,
                  trainer: BaseRunner, # TODO better annotate
                  batch_size: int,
                  train_dataset: Dataset,
                  val_dataset: Dataset,
                  log_directory: str,
                  evaluators: EvalConfiguration,
                  runners: List[BaseRunner],
                  test_datasets: Optional[List[Dataset]]=None,
                  save_n_best_vars: int=1,
                  link_best_vars="/tmp/variables.data.best",
                  vars_prefix="/tmp/variables.data",
                  logging_period: int=20,
                  validation_period: int=500,
                  runners_batch_size: Optional[int]=None,
                  postprocess: Callable=None,
                  minimize_metric: bool=False):

    # TODO finish the list
    """
    Performs the training loop for given graph and data.

    Args:
        tf_manager: TensorFlowManager with initialized sessions.
        epochs: Number of epochs for which the algoritm will learn.
        trainer: The trainer object containg the TensorFlow code for computing
            the loss and optimization operation.
        train_dataset:
        val_dataset:
        postprocess: Function that takes the output sentence as produced by the
            decoder and transforms into tokenized sentence.
        log_directory: Directory where the TensordBoard log will be generated.
            If None, nothing will be done.
        evaluators: List of evaluators. The last evaluator is used as the main.
            An evaluator is a tuple of the name of the generated series, the
            name of the dataset series the generated one is evaluated with and
            the evaluation function. If only one series names is provided, it
            means the generated and dataset series have the same name.
    """

    evaluators = [(e[0], e[0], e[1]) if len(e) == 2 else e
                  for e in evaluators]

    main_metric = "{}/{}".format(evaluators[-1][0], evaluators[-1][-1].name)
    step = 0
    seen_instances = 0

    if save_n_best_vars < 1:
        raise Exception('save_n_best_vars must be greater than zero')

    if save_n_best_vars == 1:
        variables_files = [vars_prefix]
    elif save_n_best_vars > 1:
        variables_files = ['{}.{}'.format(vars_prefix, i)
                           for i in range(save_n_best_vars)]

    if minimize_metric:
        saved_scores = [np.inf for _ in range(save_n_best_vars)]
        best_score = np.inf
    else:
        saved_scores = [-np.inf for _ in range(save_n_best_vars)]
        best_score = -np.inf

    tf_manager.save(variables_files[0])

    if os.path.islink(link_best_vars):
        # if overwriting output dir
        os.unlink(link_best_vars)
    os.symlink(os.path.basename(variables_files[0]), link_best_vars)

    if log_directory:
        log("Initializing TensorBoard summary writer.")
        tb_writer = tf.train.SummaryWriter(log_directory,
                                           tf_manager.sessions[0].graph)
        log("TesorBoard writer initialized.")

    best_score_epoch = 0
    best_score_batch_no = 0

    log("Starting training")
    try:
        for i in range(epochs):
            log_print("")
            log("Epoch {} starts".format(i + 1), color='red')

            train_dataset.shuffle()
            train_batched_datasets = train_dataset.batch_dataset(batch_size)

            for batch_n, batch_dataset in enumerate(train_batched_datasets):

                step += 1
                seen_instances += len(batch_dataset)
                if step % logging_period == logging_period - 1:
                    trainer_result = tf_manager.execute(
                        batch_dataset, [trainer], train=True,
                        summaries=True)
                    train_results, train_outputs = run_on_dataset(
                        tf_manager, runners, batch_dataset,
                        postprocess, write_out=False)
                    train_evaluation = evaluation(
                        evaluators, batch_dataset, runners,
                        train_results, train_outputs)

                    _log_continuons_evaluation(tb_writer, main_metric,
                                               train_evaluation,
                                               seen_instances,
                                               trainer_result,
                                               train=True)
                else:
                    tf_manager.execute(batch_dataset, [trainer],
                                       train=True, summaries=False)

                if step % validation_period == validation_period - 1:
                    val_results, val_outputs = run_on_dataset(
                        tf_manager, runners, val_dataset,
                        postprocess, write_out=False,
                        batch_size=runners_batch_size)
                    val_evaluation = evaluation(
                        evaluators, val_dataset, runners, val_results,
                        val_outputs)

                    this_score = val_evaluation[main_metric]

                    def is_better(score1, score2, minimize):
                        if minimize:
                            return score1 < score2
                        else:
                            return score1 > score2

                    def argworst(scores, minimize):
                        if minimize:
                            return np.argmax(scores)
                        else:
                            return np.argmin(scores)

                    if is_better(this_score, best_score, minimize_metric):
                        best_score = this_score
                        best_score_epoch = i + 1
                        best_score_batch_no = batch_n

                    worst_index = argworst(saved_scores, minimize_metric)
                    worst_score = saved_scores[worst_index]

                    if is_better(this_score, worst_score, minimize_metric):
                        # we need to save this score instead the worst score
                        worst_var_file = variables_files[worst_index]
                        tf_manager.save(worst_var_file)
                        saved_scores[worst_index] = this_score
                        log("Variable file saved in {}".format(worst_var_file))

                        # update symlink
                        if best_score == this_score:
                            os.unlink(link_best_vars)
                            os.symlink(os.path.basename(worst_var_file),
                                       link_best_vars)

                        log("Best scores saved so far: {}".format(saved_scores))

                    log("Validation (epoch {}, batch number {}):"
                        .format(i + 1, batch_n), color='blue')

                    _log_continuons_evaluation(tb_writer, main_metric,
                                               val_evaluation, seen_instances,
                                               val_results, train=False)

                    if this_score == best_score:
                        best_score_str = colored("{:.2f}".format(best_score),
                                                 attrs=['bold'])
                    else:
                        best_score_str = "{:.2f}".format(best_score)

                    log("best {} on validation: {} (in epoch {}, "
                        "after batch number {})"
                        .format(main_metric, best_score_str,
                                best_score_epoch, best_score_batch_no),
                        color='blue')

                    log_print("")
                    _print_examples(val_dataset, val_outputs)

    except KeyboardInterrupt:
        log("Training interrupted by user.")


    log("Training finished. Maximum {} on validation data: {:.2f}, epoch {}"
        .format(main_metric, best_score, best_score_epoch))

    if test_datasets and os.path.islink(link_best_vars):
        tf_manager.restore(link_best_vars)

    for dataset in test_datasets:
        test_results, test_outputs = run_on_dataset(
            tf_manager, runners, dataset, postprocess,
            write_out=True, batch_size=runners_batch_size)
        eval_result = evaluation(evaluators, dataset, runners,
                                 test_results, test_outputs)
        print_final_evaluation(dataset.name, eval_result)

    log("Finished.")
Esempio n. 4
0
def training_loop(
        tf_manager: TensorFlowManager,
        epochs: int,
        trainer: GenericTrainer,  # TODO better annotate
        batch_size: int,
        log_directory: str,
        evaluators: EvalConfiguration,
        runners: List[BaseRunner],
        train_dataset: Dataset,
        val_dataset: Union[Dataset, List[Dataset]],
        test_datasets: Optional[List[Dataset]] = None,
        logging_period: Union[str, int] = 20,
        validation_period: Union[str, int] = 500,
        val_preview_input_series: Optional[List[str]] = None,
        val_preview_output_series: Optional[List[str]] = None,
        val_preview_num_examples: int = 15,
        train_start_offset: int = 0,
        runners_batch_size: Optional[int] = None,
        initial_variables: Optional[Union[str, List[str]]] = None,
        postprocess: Postprocess = None) -> None:
    """Execute the training loop for given graph and data.

    Args:
        tf_manager: TensorFlowManager with initialized sessions.
        epochs: Number of epochs for which the algoritm will learn.
        trainer: The trainer object containg the TensorFlow code for computing
            the loss and optimization operation.
        batch_size: number of examples in one mini-batch
        log_directory: Directory where the TensordBoard log will be generated.
            If None, nothing will be done.
        evaluators: List of evaluators. The last evaluator is used as the main.
            An evaluator is a tuple of the name of the generated
            series, the name of the dataset series the generated one is
            evaluated with and the evaluation function. If only one
            series names is provided, it means the generated and
            dataset series have the same name.
        runners: List of runners for logging and evaluation runs
        train_dataset: Dataset used for training
        val_dataset: used for validation. Can be Dataset or a list of datasets.
            The last dataset is used as the main one for storing best results.
            When using multiple datasets. It is recommended to name them for
            better Tensorboard visualization.
        test_datasets: List of datasets used for testing
        logging_period: after how many batches should the logging happen. It
            can also be defined as a time period in format like: 3s; 4m; 6h;
            1d; 3m15s; 3seconds; 4minutes; 6hours; 1days
        validation_period: after how many batches should the validation happen.
            It can also be defined as a time period in same format as logging
        val_preview_input_series: which input series to preview in validation
        val_preview_output_series: which output series to preview in validation
        val_preview_num_examples: how many examples should be printed during
            validation
        train_start_offset: how many lines from the training dataset should be
            skipped. The training starts from the next batch.
        runners_batch_size: batch size of runners. It is the same as batch_size
            if not specified
        initial_variables: variables used for initialization, for example for
            continuation of training. Provide it with a path to your model
            directory and its checkpoint file group common prefix, e.g.
            "variables.data", or "variables.data.3" in case of multiple
            checkpoints per experiment.
        postprocess: A function which takes the dataset with its output series
            and generates additional series from them.
    """
    check_argument_types()

    if isinstance(val_dataset, Dataset):
        val_datasets = [val_dataset]
    else:
        val_datasets = val_dataset

    log_period_batch, log_period_time = _resolve_period(logging_period)
    val_period_batch, val_period_time = _resolve_period(validation_period)

    _check_series_collisions(runners, postprocess)

    _log_model_variables(var_list=trainer.var_list)

    if runners_batch_size is None:
        runners_batch_size = batch_size

    evaluators = [(e[0], e[0], e[1]) if len(e) == 2 else e for e in evaluators]

    if evaluators:
        main_metric = "{}/{}".format(evaluators[-1][0],
                                     evaluators[-1][-1].name)
    else:
        main_metric = "{}/{}".format(runners[-1].decoder_data_id,
                                     runners[-1].loss_names[0])

        if not tf_manager.minimize_metric:
            raise ValueError("minimize_metric must be set to True in "
                             "TensorFlowManager when using loss as "
                             "the main metric")

    step = 0
    seen_instances = 0
    last_seen_instances = 0

    if initial_variables is None:
        # Assume we don't look at coder checkpoints when global
        # initial variables are supplied
        tf_manager.initialize_model_parts(runners + [trainer],
                                          save=True)  # type: ignore
    else:
        try:
            tf_manager.restore(initial_variables)
        except tf.errors.NotFoundError:
            warn("Some variables were not found in checkpoint.)")

    if log_directory:
        log("Initializing TensorBoard summary writer.")
        tb_writer = tf.summary.FileWriter(log_directory,
                                          tf_manager.sessions[0].graph)
        log("TensorBoard writer initialized.")

    log("Starting training")
    last_log_time = time.process_time()
    last_val_time = time.process_time()
    interrupt = None
    try:
        for epoch_n in range(1, epochs + 1):
            log_print("")
            log("Epoch {} begins".format(epoch_n), color="red")

            train_dataset.shuffle()
            train_batched_datasets = train_dataset.batch_dataset(batch_size)

            if epoch_n == 1 and train_start_offset:
                if not isinstance(train_dataset, LazyDataset):
                    warn("Not skipping training instances with "
                         "shuffled in-memory dataset")
                else:
                    _skip_lines(train_start_offset, train_batched_datasets)

            for batch_n, batch_dataset in enumerate(train_batched_datasets):
                step += 1
                seen_instances += len(batch_dataset)
                if _is_logging_time(step, log_period_batch, last_log_time,
                                    log_period_time):
                    trainer_result = tf_manager.execute(batch_dataset,
                                                        [trainer],
                                                        train=True,
                                                        summaries=True)
                    train_results, train_outputs = run_on_dataset(
                        tf_manager,
                        runners,
                        batch_dataset,
                        postprocess,
                        write_out=False,
                        batch_size=runners_batch_size)
                    # ensure train outputs are iterable more than once
                    train_outputs = {
                        k: list(v)
                        for k, v in train_outputs.items()
                    }
                    train_evaluation = evaluation(evaluators, batch_dataset,
                                                  runners, train_results,
                                                  train_outputs)

                    _log_continuous_evaluation(tb_writer,
                                               main_metric,
                                               train_evaluation,
                                               seen_instances,
                                               epoch_n,
                                               epochs,
                                               trainer_result,
                                               train=True)
                    last_log_time = time.process_time()
                else:
                    tf_manager.execute(batch_dataset, [trainer],
                                       train=True,
                                       summaries=False)

                if _is_logging_time(step, val_period_batch, last_val_time,
                                    val_period_time):
                    log_print("")
                    val_duration_start = time.process_time()
                    val_examples = 0
                    for val_id, valset in enumerate(val_datasets):
                        val_examples += len(valset)

                        val_results, val_outputs = run_on_dataset(
                            tf_manager,
                            runners,
                            valset,
                            postprocess,
                            write_out=False,
                            batch_size=runners_batch_size)
                        # ensure val outputs are iterable more than once
                        val_outputs = {
                            k: list(v)
                            for k, v in val_outputs.items()
                        }
                        val_evaluation = evaluation(evaluators, valset,
                                                    runners, val_results,
                                                    val_outputs)

                        valheader = (
                            "Validation (epoch {}, batch number {}):".format(
                                epoch_n, batch_n))
                        log(valheader, color="blue")
                        _print_examples(valset, val_outputs,
                                        val_preview_input_series,
                                        val_preview_output_series,
                                        val_preview_num_examples)
                        log_print("")
                        log(valheader, color="blue")

                        # The last validation set is selected to be the main
                        if val_id == len(val_datasets) - 1:
                            this_score = val_evaluation[main_metric]
                            tf_manager.validation_hook(this_score, epoch_n,
                                                       batch_n)

                            if this_score == tf_manager.best_score:
                                best_score_str = colored("{:.4g}".format(
                                    tf_manager.best_score),
                                                         attrs=["bold"])

                                # store also graph parts
                                all_coders = set.union(*[
                                    rnr.all_coders
                                    for rnr in runners + [trainer]
                                ])  # type: ignore
                                for coder in all_coders:
                                    for session in tf_manager.sessions:
                                        coder.save(session)
                            else:
                                best_score_str = "{:.4g}".format(
                                    tf_manager.best_score)

                            log("best {} on validation: {} (in epoch {}, "
                                "after batch number {})".format(
                                    main_metric, best_score_str,
                                    tf_manager.best_score_epoch,
                                    tf_manager.best_score_batch),
                                color="blue")

                        v_name = valset.name if len(val_datasets) > 1 else None
                        _log_continuous_evaluation(tb_writer,
                                                   main_metric,
                                                   val_evaluation,
                                                   seen_instances,
                                                   epoch_n,
                                                   epochs,
                                                   val_results,
                                                   train=False,
                                                   dataset_name=v_name)

                    # how long was the training between validations
                    training_duration = val_duration_start - last_val_time
                    val_duration = time.process_time() - val_duration_start

                    # the training should take at least twice the time of val.
                    steptime = (training_duration /
                                (seen_instances - last_seen_instances))
                    valtime = val_duration / val_examples
                    last_seen_instances = seen_instances
                    log("Validation time: {:.2f}s, inter-validation: {:.2f}s, "
                        "per-instance (train): {:.2f}s, per-instance (val): "
                        "{:.2f}s".format(val_duration, training_duration,
                                         steptime, valtime),
                        color="blue")
                    if training_duration < 2 * val_duration:
                        notice("Validation period setting is inefficient.")

                    log_print("")
                    last_val_time = time.process_time()

    except KeyboardInterrupt as ex:
        interrupt = ex

    log("Training finished. Maximum {} on validation data: {:.4g}, epoch {}".
        format(main_metric, tf_manager.best_score,
               tf_manager.best_score_epoch))

    if test_datasets:
        tf_manager.restore_best_vars()

        for dataset in test_datasets:
            test_results, test_outputs = run_on_dataset(
                tf_manager,
                runners,
                dataset,
                postprocess,
                write_out=True,
                batch_size=runners_batch_size)
            # ensure test outputs are iterable more than once
            test_outputs = {k: list(v) for k, v in test_outputs.items()}
            eval_result = evaluation(evaluators, dataset, runners,
                                     test_results, test_outputs)
            print_final_evaluation(dataset.name, eval_result)

    log("Finished.")

    if interrupt is not None:
        raise interrupt  # pylint: disable=raising-bad-type
    def execute(self,
                dataset: Dataset,
                execution_scripts,
                train=False,
                compute_losses=True,
                summaries=True,
                batch_size=None,
                temp=None,
                log_progress: int = 0) -> List[ExecutionResult]:
        if batch_size is None:
            batch_size = len(dataset)
        batched_dataset = dataset.batch_dataset(batch_size)
        last_log_time = time.process_time()

        batch_results = [[] for _ in execution_scripts
                         ]  # type: List[List[ExecutionResult]]
        for batch_id, batch in enumerate(batched_dataset):
            if (time.process_time() - last_log_time > log_progress
                    and log_progress > 0):
                log("Processed {} examples.".format(batch_id * batch_size))
                last_log_time = time.process_time()
            executables = [
                s.get_executable(compute_losses=compute_losses,
                                 summaries=summaries)
                for s in execution_scripts
            ]
            while not all(ex.result is not None for ex in executables):
                all_feedables = set()  # type: Set[Any]
                all_tensors_to_execute = {}
                additional_feed_dicts = []
                tensor_list_lengths = []  # type: List[int]

                for executable in executables:
                    if executable.result is None:
                        (feedables, tensors_to_execute,
                         add_feed_dict) = executable.next_to_execute()
                        if temp is not None:
                            add_feed_dict[executable.placeholder[0]] = temp
                        all_feedables = all_feedables.union(feedables)
                        all_tensors_to_execute[executable] = tensors_to_execute
                        additional_feed_dicts.append(add_feed_dict)
                        tensor_list_lengths.append(len(tensors_to_execute))
                    else:
                        tensor_list_lengths.append(0)

                feed_dict = _feed_dicts(batch, all_feedables, train=train)
                for fdict in additional_feed_dicts:
                    feed_dict.update(fdict)

                session_results = [
                    sess.run(all_tensors_to_execute, feed_dict=feed_dict)
                    for sess in self.sessions
                ]

                for executable in executables:
                    if executable.result is None:
                        executable.collect_results(
                            [res[executable] for res in session_results])

            for script_list, executable in zip(batch_results, executables):
                script_list.append(executable.result)

        collected_results = []  # type: List[ExecutionResult]
        for result_list in batch_results:
            collected_results.append(reduce_execution_results(result_list))

        return collected_results
Esempio n. 6
0
def training_loop(
        tf_manager: TensorFlowManager,
        epochs: int,
        trainer: GenericTrainer,  # TODO better annotate
        batch_size: int,
        train_dataset: Dataset,
        val_dataset: Dataset,
        log_directory: str,
        evaluators: EvalConfiguration,
        runners: List[BaseRunner],
        test_datasets: Optional[List[Dataset]] = None,
        logging_period: int = 20,
        validation_period: int = 500,
        val_preview_input_series: Optional[List[str]] = None,
        val_preview_output_series: Optional[List[str]] = None,
        val_preview_num_examples: int = 15,
        train_start_offset: int = 0,
        runners_batch_size: Optional[int] = None,
        initial_variables: Optional[Union[str, List[str]]] = None,
        postprocess: Postprocess = None) -> None:

    # TODO finish the list
    """
    Performs the training loop for given graph and data.

    Args:
        tf_manager: TensorFlowManager with initialized sessions.
        epochs: Number of epochs for which the algoritm will learn.
        trainer: The trainer object containg the TensorFlow code for computing
            the loss and optimization operation.
        train_dataset:
        val_dataset:
        postprocess: Function that takes the output sentence as produced by the
            decoder and transforms into tokenized sentence.
        log_directory: Directory where the TensordBoard log will be generated.
            If None, nothing will be done.
        evaluators: List of evaluators. The last evaluator is used as the main.
            An evaluator is a tuple of the name of the generated series, the
            name of the dataset series the generated one is evaluated with and
            the evaluation function. If only one series names is provided, it
            means the generated and dataset series have the same name.
    """
    if validation_period < logging_period:
        raise AssertionError(
            "Validation period can't be smaller than logging period.")
    _check_series_collisions(runners, postprocess)

    _log_model_variables()

    if tf_manager.report_gpu_memory_consumption:
        log("GPU memory usage: {}".format(gpu_memusage()))

    # TODO DOCUMENT_THIS
    if runners_batch_size is None:
        runners_batch_size = batch_size

    evaluators = [(e[0], e[0], e[1]) if len(e) == 2 else e for e in evaluators]

    if evaluators:
        main_metric = "{}/{}".format(evaluators[-1][0],
                                     evaluators[-1][-1].name)
    else:
        main_metric = "{}/{}".format(runners[-1].decoder_data_id,
                                     runners[-1].loss_names[0])

        if not tf_manager.minimize_metric:
            raise ValueError("minimize_metric must be set to True in "
                             "TensorFlowManager when using loss as "
                             "the main metric")

    step = 0
    seen_instances = 0

    if initial_variables is None:
        # Assume we don't look at coder checkpoints when global
        # initial variables are supplied
        tf_manager.initialize_model_parts(runners + [trainer],
                                          save=True)  # type: ignore
    else:
        tf_manager.restore(initial_variables)

    if log_directory:
        log("Initializing TensorBoard summary writer.")
        tb_writer = tf.summary.FileWriter(log_directory,
                                          tf_manager.sessions[0].graph)
        log("TensorBoard writer initialized.")

    log("Starting training")
    try:
        for epoch_n in range(1, epochs + 1):
            log_print("")
            log("Epoch {} starts".format(epoch_n), color='red')

            train_dataset.shuffle()
            train_batched_datasets = train_dataset.batch_dataset(batch_size)

            if epoch_n == 1 and train_start_offset:
                if not isinstance(train_dataset, LazyDataset):
                    warn("Not skipping training instances with "
                         "shuffled in-memory dataset")
                else:
                    _skip_lines(train_start_offset, train_batched_datasets)

            for batch_n, batch_dataset in enumerate(train_batched_datasets):
                step += 1
                seen_instances += len(batch_dataset)
                if step % logging_period == logging_period - 1:
                    trainer_result = tf_manager.execute(batch_dataset,
                                                        [trainer],
                                                        train=True,
                                                        summaries=True)
                    train_results, train_outputs = run_on_dataset(
                        tf_manager,
                        runners,
                        batch_dataset,
                        postprocess,
                        write_out=False)
                    # ensure train outputs are iterable more than once
                    train_outputs = {
                        k: list(v)
                        for k, v in train_outputs.items()
                    }
                    train_evaluation = evaluation(evaluators, batch_dataset,
                                                  runners, train_results,
                                                  train_outputs)

                    _log_continuous_evaluation(tb_writer,
                                               tf_manager,
                                               main_metric,
                                               train_evaluation,
                                               seen_instances,
                                               epoch_n,
                                               epochs,
                                               trainer_result,
                                               train=True)
                else:
                    tf_manager.execute(batch_dataset, [trainer],
                                       train=True,
                                       summaries=False)

                if step % validation_period == validation_period - 1:
                    val_results, val_outputs = run_on_dataset(
                        tf_manager,
                        runners,
                        val_dataset,
                        postprocess,
                        write_out=False,
                        batch_size=runners_batch_size)
                    # ensure val outputs are iterable more than once
                    val_outputs = {k: list(v) for k, v in val_outputs.items()}
                    val_evaluation = evaluation(evaluators, val_dataset,
                                                runners, val_results,
                                                val_outputs)

                    this_score = val_evaluation[main_metric]
                    tf_manager.validation_hook(this_score, epoch_n, batch_n)

                    log("Validation (epoch {}, batch number {}):".format(
                        epoch_n, batch_n),
                        color='blue')

                    _log_continuous_evaluation(tb_writer,
                                               tf_manager,
                                               main_metric,
                                               val_evaluation,
                                               seen_instances,
                                               epoch_n,
                                               epochs,
                                               val_results,
                                               train=False)

                    if this_score == tf_manager.best_score:
                        best_score_str = colored("{:.4g}".format(
                            tf_manager.best_score),
                                                 attrs=['bold'])
                    else:
                        best_score_str = "{:.4g}".format(tf_manager.best_score)

                    log("best {} on validation: {} (in epoch {}, "
                        "after batch number {})".format(
                            main_metric, best_score_str,
                            tf_manager.best_score_epoch,
                            tf_manager.best_score_batch),
                        color='blue')

                    log_print("")
                    _print_examples(val_dataset, val_outputs,
                                    val_preview_input_series,
                                    val_preview_output_series,
                                    val_preview_num_examples)

    except KeyboardInterrupt:
        log("Training interrupted by user.")

    log("Training finished. Maximum {} on validation data: {:.4g}, epoch {}".
        format(main_metric, tf_manager.best_score,
               tf_manager.best_score_epoch))

    if test_datasets:
        tf_manager.restore_best_vars()

    for dataset in test_datasets:
        test_results, test_outputs = run_on_dataset(
            tf_manager,
            runners,
            dataset,
            postprocess,
            write_out=True,
            batch_size=runners_batch_size)
        # ensure test outputs are iterable more than once
        test_outputs = {k: list(v) for k, v in test_outputs.items()}
        eval_result = evaluation(evaluators, dataset, runners, test_results,
                                 test_outputs)
        print_final_evaluation(dataset.name, eval_result)

    log("Finished.")
Esempio n. 7
0
def training_loop(
        tf_manager: TensorFlowManager,
        epochs: int,
        trainer: GenericTrainer,  # TODO better annotate
        batch_size: int,
        train_dataset: Dataset,
        val_dataset: Dataset,
        log_directory: str,
        evaluators: EvalConfiguration,
        runners: List[BaseRunner],
        test_datasets: Optional[List[Dataset]] = None,
        link_best_vars="/tmp/variables.data.best",
        vars_prefix="/tmp/variables.data",
        logging_period: int = 20,
        validation_period: int = 500,
        val_preview_input_series: Optional[List[str]] = None,
        val_preview_output_series: Optional[List[str]] = None,
        val_preview_num_examples: int = 15,
        train_start_offset: int = 0,
        runners_batch_size: Optional[int] = None,
        initial_variables: Optional[Union[str, List[str]]] = None,
        postprocess: Postprocess = None,
        minimize_metric: bool = False):

    # TODO finish the list
    """
    Performs the training loop for given graph and data.

    Args:
        tf_manager: TensorFlowManager with initialized sessions.
        epochs: Number of epochs for which the algoritm will learn.
        trainer: The trainer object containg the TensorFlow code for computing
            the loss and optimization operation.
        train_dataset:
        val_dataset:
        postprocess: Function that takes the output sentence as produced by the
            decoder and transforms into tokenized sentence.
        log_directory: Directory where the TensordBoard log will be generated.
            If None, nothing will be done.
        evaluators: List of evaluators. The last evaluator is used as the main.
            An evaluator is a tuple of the name of the generated series, the
            name of the dataset series the generated one is evaluated with and
            the evaluation function. If only one series names is provided, it
            means the generated and dataset series have the same name.
    """
    if validation_period < logging_period:
        raise AssertionError(
            "Logging period can't smaller than validation period.")
    _check_series_collisions(runners, postprocess)

    paramstr = "Model has {} trainable parameters".format(trainer.n_parameters)
    if tf_manager.report_gpu_memory_consumption:
        paramstr += ", GPU memory usage: {}".format(gpu_memusage())

    log(paramstr)

    # TODO DOCUMENT_THIS
    if runners_batch_size is None:
        runners_batch_size = batch_size

    evaluators = [(e[0], e[0], e[1]) if len(e) == 2 else e for e in evaluators]

    main_metric = "{}/{}".format(evaluators[-1][0], evaluators[-1][-1].name)
    step = 0
    seen_instances = 0

    save_n_best_vars = tf_manager.saver_max_to_keep
    if save_n_best_vars < 1:
        raise Exception('save_n_best_vars must be greater than zero')

    if save_n_best_vars == 1:
        variables_files = [vars_prefix]
    elif save_n_best_vars > 1:
        variables_files = [
            '{}.{}'.format(vars_prefix, i) for i in range(save_n_best_vars)
        ]

    if minimize_metric:
        saved_scores = [np.inf for _ in range(save_n_best_vars)]
        best_score = np.inf
    else:
        saved_scores = [-np.inf for _ in range(save_n_best_vars)]
        best_score = -np.inf

    if initial_variables is None:
        # Assume we don't look at coder checkpoints when global
        # initial variables are supplied
        tf_manager.initialize_model_parts(runners + [trainer])  # type: ignore
        tf_manager.save(variables_files[0])
    else:
        tf_manager.restore(initial_variables)

    if os.path.islink(link_best_vars):
        # if overwriting output dir
        os.unlink(link_best_vars)
    os.symlink(os.path.basename(variables_files[0]), link_best_vars)

    if log_directory:
        log("Initializing TensorBoard summary writer.")
        tb_writer = tf.train.SummaryWriter(log_directory,
                                           tf_manager.sessions[0].graph)
        log("TensorBoard writer initialized.")

    best_score_epoch = 0
    best_score_batch_no = 0

    log("Starting training")
    try:
        for epoch_n in range(1, epochs + 1):
            log_print("")
            log("Epoch {} starts".format(epoch_n), color='red')

            train_dataset.shuffle()
            train_batched_datasets = train_dataset.batch_dataset(batch_size)

            if epoch_n == 1 and train_start_offset:
                if not isinstance(train_dataset, LazyDataset):
                    log(
                        "Warning: Not skipping training instances with "
                        "shuffled in-memory dataset",
                        color="red")
                else:
                    _skip_lines(train_start_offset, train_batched_datasets)

            for batch_n, batch_dataset in enumerate(train_batched_datasets):
                step += 1
                seen_instances += len(batch_dataset)
                if step % logging_period == logging_period - 1:
                    trainer_result = tf_manager.execute(batch_dataset,
                                                        [trainer],
                                                        train=True,
                                                        summaries=True)
                    train_results, train_outputs = run_on_dataset(
                        tf_manager,
                        runners,
                        batch_dataset,
                        postprocess,
                        write_out=False)
                    # ensure train outputs are iterable more than once
                    train_outputs = {
                        k: list(v)
                        for k, v in train_outputs.items()
                    }
                    train_evaluation = evaluation(evaluators, batch_dataset,
                                                  runners, train_results,
                                                  train_outputs)

                    _log_continuous_evaluation(tb_writer,
                                               tf_manager,
                                               main_metric,
                                               train_evaluation,
                                               seen_instances,
                                               epoch_n,
                                               epochs,
                                               trainer_result,
                                               train=True)
                else:
                    tf_manager.execute(batch_dataset, [trainer],
                                       train=True,
                                       summaries=False)

                if step % validation_period == validation_period - 1:
                    val_results, val_outputs = run_on_dataset(
                        tf_manager,
                        runners,
                        val_dataset,
                        postprocess,
                        write_out=False,
                        batch_size=runners_batch_size)
                    # ensure val outputs are iterable more than once
                    val_outputs = {k: list(v) for k, v in val_outputs.items()}
                    val_evaluation = evaluation(evaluators, val_dataset,
                                                runners, val_results,
                                                val_outputs)

                    this_score = val_evaluation[main_metric]

                    def is_better(score1, score2, minimize):
                        if minimize:
                            return score1 < score2
                        else:
                            return score1 > score2

                    def argworst(scores, minimize):
                        if minimize:
                            return np.argmax(scores)
                        else:
                            return np.argmin(scores)

                    if is_better(this_score, best_score, minimize_metric):
                        best_score = this_score
                        best_score_epoch = epoch_n
                        best_score_batch_no = batch_n

                    worst_index = argworst(saved_scores, minimize_metric)
                    worst_score = saved_scores[worst_index]

                    if is_better(this_score, worst_score, minimize_metric):
                        # we need to save this score instead the worst score
                        worst_var_file = variables_files[worst_index]
                        tf_manager.save(worst_var_file)
                        saved_scores[worst_index] = this_score
                        log("Variable file saved in {}".format(worst_var_file))

                        # update symlink
                        if best_score == this_score:
                            os.unlink(link_best_vars)
                            os.symlink(os.path.basename(worst_var_file),
                                       link_best_vars)

                        log("Best scores saved so far: {}".format(
                            saved_scores))

                    log("Validation (epoch {}, batch number {}):".format(
                        epoch_n, batch_n),
                        color='blue')

                    _log_continuous_evaluation(tb_writer,
                                               tf_manager,
                                               main_metric,
                                               val_evaluation,
                                               seen_instances,
                                               epoch_n,
                                               epochs,
                                               val_results,
                                               train=False)

                    if this_score == best_score:
                        best_score_str = colored("{:.4g}".format(best_score),
                                                 attrs=['bold'])
                    else:
                        best_score_str = "{:.4g}".format(best_score)

                    log("best {} on validation: {} (in epoch {}, "
                        "after batch number {})".format(
                            main_metric, best_score_str, best_score_epoch,
                            best_score_batch_no),
                        color='blue')

                    log_print("")
                    _print_examples(val_dataset, val_outputs,
                                    val_preview_input_series,
                                    val_preview_output_series,
                                    val_preview_num_examples)

    except KeyboardInterrupt:
        log("Training interrupted by user.")

    log("Training finished. Maximum {} on validation data: {:.4g}, epoch {}".
        format(main_metric, best_score, best_score_epoch))

    if test_datasets and os.path.islink(link_best_vars):
        tf_manager.restore(link_best_vars)

    for dataset in test_datasets:
        test_results, test_outputs = run_on_dataset(
            tf_manager,
            runners,
            dataset,
            postprocess,
            write_out=True,
            batch_size=runners_batch_size)
        # ensure test outputs are iterable more than once
        test_outputs = {k: list(v) for k, v in test_outputs.items()}
        eval_result = evaluation(evaluators, dataset, runners, test_results,
                                 test_outputs)
        print_final_evaluation(dataset.name, eval_result)

    log("Finished.")