def run_experiment(dataset, INPUT_MEAN, INPUT_STD, SOURCE_TYPES, VALIDATION_SOURCE_TYPES, DOWNSAMPLE_FACTOR, SEQ_LENGTH, TARGET_SEQ_LENGTH, MAX_TARGET_POWER, TARGET_APPLIANCE, TRAINING_SEED, VERBOSE_TRAINING, LEARNING_RATE, NUM_SEQ_PER_BATCH, EPOCHS, STEPS_PER_EPOCH, USE_CUDA, CHECKPOINT_BEST_MSE, CHECKPOINTING_EVERY_N_EPOCHS, TEST_DISAGGREGATE_EVERY_N_EPOCHS, _run): torch.manual_seed(TRAINING_SEED) OUTPUT_FOLDER = os.path.join(ex.get_experiment_info()['name'],"output") for observer in _run.observers: if type(observer) is FileStorageObserver: OUTPUT_FOLDER = os.path.join(observer.basedir, str(_run._id)) VERBOSE_TRAINING = 0 os.makedirs(OUTPUT_FOLDER, exist_ok=True) writer = SummaryWriter(log_dir=OUTPUT_FOLDER) # From dataset Ingredient TRAIN_BUILDINGS = dataset["TRAIN_BUILDINGS"] ON_POWER_THRESHOLD = dataset["ON_POWER_THRESHOLD"] ############################################################################################## #PREPARE DATASET (DATALOADERs) ############################################################################################## running_data_processes = [] # stop these at the end sources, validation_sources = get_sources( training_source_names=SOURCE_TYPES, validation_source_names=VALIDATION_SOURCE_TYPES, seq_length=SEQ_LENGTH, sources_seed=TRAINING_SEED, validation_stride=128 ) offset = (SEQ_LENGTH - TARGET_SEQ_LENGTH) // 2 groundtruth_processing = SubSequence(offset,-offset) input_processing_steps = [Add(-INPUT_MEAN), DivideBy(INPUT_STD), Transpose((0, 2, 1))] target_processing_steps = [groundtruth_processing, Add(-INPUT_MEAN), DivideBy(INPUT_STD), Transpose((0, 2, 1))] if DOWNSAMPLE_FACTOR > 1: downsample_rng = np.random.RandomState(TRAINING_SEED) input_processing_steps_training = [DownSample(DOWNSAMPLE_FACTOR, downsample_rng)] + input_processing_steps else: input_processing_steps_training = input_processing_steps validation_pipeline = DataPipeline( sources=validation_sources, num_seq_per_batch=NUM_SEQ_PER_BATCH, input_processing=input_processing_steps_training, target_processing=target_processing_steps ) validation_batches = get_validation_batches(validation_pipeline) print("appliance {} has {} validation batches".format( TARGET_APPLIANCE, sum([len(v) for k, v in validation_batches.items()]) )) data_pipeline = DataPipeline( sources=sources, num_seq_per_batch=NUM_SEQ_PER_BATCH, input_processing=input_processing_steps_training, target_processing=target_processing_steps ) data_thread = DataProcess(data_pipeline) data_thread.start() running_data_processes.append(data_thread) net = _Net(SEQ_LENGTH, TARGET_SEQ_LENGTH) print(net) metrics_accu = MetricsAccumulator( on_power_threshold=ON_POWER_THRESHOLD, max_power=MAX_TARGET_POWER) # note: MSE - Mean Squared Error criterion = torch.nn.MSELoss() state_criterion = torch.nn.BCEWithLogitsLoss() stop_training = False best_mse = None # PREPARE DISAGGREGATOR if TEST_DISAGGREGATE_EVERY_N_EPOCHS is not None: test_disaggregator = Disaggregator( EVALUATION_DATA_PATH='input/evaluation_data_48h', TARGET_APPLIANCE = TARGET_APPLIANCE, ON_POWER_THRESHOLD = ON_POWER_THRESHOLD, MAX_TARGET_POWER = MAX_TARGET_POWER, pad_mains = True, pad_appliance = False, disagg_func = disag_seq2seq_sgn, downsample_factor = DOWNSAMPLE_FACTOR, disagg_kwargs = dict( model = net, input_processing=input_processing_steps, target_processing=target_processing_steps, n_seq_per_batch = NUM_SEQ_PER_BATCH, seq_length = SEQ_LENGTH, target_seq_length = TARGET_SEQ_LENGTH, USE_CUDA=USE_CUDA, stride = 1 ) ) # PREPARE TENSORS, WHICH WILL BE FED USED DURING TRAINING AND VALIDATION input = torch.FloatTensor(NUM_SEQ_PER_BATCH, 1, SEQ_LENGTH) target = torch.FloatTensor(NUM_SEQ_PER_BATCH, 1, TARGET_SEQ_LENGTH) target_class = torch.FloatTensor(NUM_SEQ_PER_BATCH, 1, TARGET_SEQ_LENGTH) if USE_CUDA: # note: push to GPU net.cuda() criterion.cuda() input, target = input.cuda(), target.cuda() target_class = target_class.cuda() # setup optimizer. TODO: Should we use 'Adam' for disaggregator? optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE, betas=(0.9, 0.999)) #optimizer = optim.SGD(net.parameters(), momentum=0.9, nesterov=True, lr=LEARNING_RATE) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[50,75], gamma=0.1) history = {} csvpath = os.path.join(OUTPUT_FOLDER, "history.csv") if os.path.exists(csvpath): print("Already exists: {}".format(csvpath)) return -1 progbar_epoch = tqdm(desc="Epoch", total=EPOCHS, unit="epoch", disable=(not VERBOSE_TRAINING)) for epoch in range(EPOCHS): # TRAINING metrics_log = {'training':{}} training_loss = 0.0 progbar = tqdm(desc="Train", total=STEPS_PER_EPOCH, leave=False, disable=(not VERBOSE_TRAINING)) for i in range(STEPS_PER_EPOCH): net.zero_grad() batch = data_thread.get_batch() while batch is None: batch = data_thread.get_batch() qsize = data_thread._queue.qsize() aggregated_signal = torch.from_numpy(batch.after_processing.input) target_signal = torch.from_numpy(batch.after_processing.target) target_class_np = np.float32(groundtruth_processing(batch.before_processing.target) > 15.0) target_class_t = torch.from_numpy(target_class_np.transpose((0, 2, 1))) if USE_CUDA: aggregated_signal = aggregated_signal.cuda() target_signal = target_signal.cuda() target_class_t = target_class_t.cuda() input.resize_as_(aggregated_signal).copy_(aggregated_signal) target.resize_as_(target_signal).copy_(target_signal) target_class.resize_as_(target_class_t).copy_(target_class_t) output, on_logit = net(input) loss = criterion(output, target) + state_criterion(on_logit, target_class) loss.backward() optimizer.step() training_loss += loss.item() progbar.set_postfix(dict( loss = "{:.4f}".format(loss.item()), qsize = qsize ), refresh=False) progbar.update() metrics_log['training']['loss'] = float(training_loss/STEPS_PER_EPOCH) metrics_log['training']['lr'] = optimizer.param_groups[0]['lr'] # VALIDATION #pr_num_thresholds = 127 for fold in validation_batches: metrics_accu.reset_accumulator() #accumulated_pr = {} #for cl in ["tp", "tn", "fp", "fn"]: # accumulated_pr[cl] = torch.LongTensor(pr_num_thresholds).zero_() for batch in validation_batches[fold]: aggregated_signal = torch.from_numpy(batch.after_processing.input) target_signal = torch.from_numpy(batch.after_processing.target) target_class_np = np.float32(groundtruth_processing(batch.before_processing.target) > 15.0) target_class_t = torch.from_numpy(target_class_np.transpose((0, 2, 1))) if USE_CUDA: aggregated_signal = aggregated_signal.cuda() target_signal = target_signal.cuda() target_class_t = target_class_t.cuda() input.resize_as_(aggregated_signal).copy_(aggregated_signal) target.resize_as_(target_signal).copy_(target_signal) target_class.resize_as_(target_class_t).copy_(target_class_t) with torch.no_grad(): output, on_logit = net(input) val_loss = criterion(output, target) + state_criterion(on_logit, target_class) loss_value = val_loss.item() # other metrics pred_y = data_pipeline.apply_inverse_processing(output.cpu().data.numpy(), 'target') true_y = groundtruth_processing(batch.before_processing.target) metrics_accu.accumulate_metrics(true_y, pred_y, val_loss=loss_value) #calculate_pr_curve_torch(accumulated_pr, MAX_TARGET_POWER, true_y, pred_y, num_thresholds=pr_num_thresholds) for key, value in metrics_accu.finalize_metrics().items(): metrics_log.setdefault(fold[0], {}).setdefault(key, {})[fold[1]] = value #precision = accumulated_pr["tp"] / (accumulated_pr["tp"] + accumulated_pr["fp"]) #recall = accumulated_pr["tp"] / (accumulated_pr["tp"] + accumulated_pr["fn"]) #writer.add_pr_curve_raw("pr_{}/{}".format(fold[0], fold[1]), # true_positive_counts=accumulated_pr["tp"], # false_positive_counts=accumulated_pr["fp"], # true_negative_counts=accumulated_pr["tn"], # false_negative_counts=accumulated_pr["fn"], # precision=precision, recall=recall, # global_step=(epoch+1)*STEPS_PER_EPOCH, num_thresholds=pr_num_thresholds) # LR Scheduler val_loss = metrics_log['unseen_activations']['val_loss']['rss'] #val_loss = metrics_log['mean_squared_error']['unseen_activations']['rss'] #scheduler.step(val_loss) scheduler.step() # PRINT STATS if not VERBOSE_TRAINING: print('[{:d}/{:d}] {}'.format(epoch+1, EPOCHS, metrics_log['training'])) else: progbar_epoch.set_postfix(dict(loss=metrics_log['training']['loss']), refresh=False) progbar_epoch.update() progbar.close() # store in history / tensorboard for fold, metrics_for_fold in metrics_log.items(): for metric_name, value in metrics_for_fold.items(): if type(value) == dict: SW_add_scalars2(writer, "{}/{}".format(fold, metric_name), value, (epoch+1)*STEPS_PER_EPOCH) for k, v in value.items(): name = "{}/{}/{}".format(fold, metric_name, k) history.setdefault(name, []).append(v) else: name = "{}/{}".format(fold, metric_name) writer.add_scalar(name, value, (epoch+1)*STEPS_PER_EPOCH) history.setdefault(name, []).append(value) # CHECKPOINTING if CHECKPOINT_BEST_MSE: mse = val_loss if best_mse is None: best_mse = mse if best_mse > mse: msg = "[{:d}/{:d}] MSE improved from {:.4f} to {:.4f} (d={:f}), saving model...".format(epoch+1, EPOCHS, best_mse, mse, best_mse-mse) if not VERBOSE_TRAINING: print(msg) else: progbar_epoch.write(msg) torch.save({ 'epoch': epoch + 1, 'step' : (epoch+1)*STEPS_PER_EPOCH, 'mse' : mse, 'model': net.state_dict()}, '{}/net_best_mse.pth.tar'.format(OUTPUT_FOLDER)) best_mse = mse if CHECKPOINTING_EVERY_N_EPOCHS is not None: if (epoch+1) % CHECKPOINTING_EVERY_N_EPOCHS == 0: torch.save(net.state_dict(), '{}/net_step_{:06d}.pth'.format(OUTPUT_FOLDER, (epoch+1)*STEPS_PER_EPOCH)) if TEST_DISAGGREGATE_EVERY_N_EPOCHS is not None: if (epoch+1) % TEST_DISAGGREGATE_EVERY_N_EPOCHS == 0: scores = test_disaggregator.calculate_metrics() scores_by_metric = {} for building_i, building in scores.items(): for metric, value in building.items(): scores_by_metric.setdefault(metric, {})[building_i] = value for metric, building_d in scores_by_metric.items(): SW_add_scalars2(writer, "test_score/{}".format(metric), building_d, (epoch+1)*STEPS_PER_EPOCH) if stop_training: break # CHECKPOINTING at end torch.save({ 'epoch': epoch + 1, 'step' : (epoch+1)*STEPS_PER_EPOCH, 'model': net.state_dict(), 'optimizer': optimizer.state_dict(), #'scheduler': scheduler.state_dict() # TODO: scheduler is not saved this way, scheduler.state_dict() does not exist }, '{}/net_step_{:06d}.pth.tar'.format(OUTPUT_FOLDER, (epoch+1)*STEPS_PER_EPOCH)) df = pd.DataFrame(history) df.to_csv(csvpath) for p in running_data_processes: p.stop() writer.close() #return 42 return metrics_log['training']['loss']
def load_disaggregator(EVALUATION_DATA_PATH, MODEL_PATH, config=None, USE_CUDA=True): """ Helper function for the disaggregator script """ if config is None: config = os.path.dirname(MODEL_PATH) if type(config) == str: try: import jsonpickle with open(os.path.join(config, 'config.json'), 'r') as configfile: config = jsonpickle.decode(configfile.read()) except: return None assert(type(config) == dict) dataset = config['dataset'] SEQ_LENGTH = config['SEQ_LENGTH'] TARGET_SEQ_LENGTH = config['TARGET_SEQ_LENGTH'] TARGET_APPLIANCE = dataset['TARGET_APPLIANCE'] ON_POWER_THRESHOLD = dataset['ON_POWER_THRESHOLD'] MAX_TARGET_POWER = config['MAX_TARGET_POWER'] NUM_SEQ_PER_BATCH = config['NUM_SEQ_PER_BATCH'] INPUT_STD = config['INPUT_STD'] INPUT_MEAN = config['INPUT_MEAN'] DOWNSAMPLE_FACTOR = config['DOWNSAMPLE_FACTOR'] #NUM_SEQ_PER_BATCH = 1024 # override net = _Net(SEQ_LENGTH, TARGET_SEQ_LENGTH) offset = (SEQ_LENGTH - TARGET_SEQ_LENGTH) // 2 input_processing_steps = [Add(-INPUT_MEAN), DivideBy(INPUT_STD), Transpose((0, 2, 1))] target_processing_steps = [SubSequence(offset,-offset), Add(-INPUT_MEAN), DivideBy(INPUT_STD), Transpose((0, 2, 1))] if MODEL_PATH.endswith("/"): MODEL_PATH = MODEL_PATH + 'net_step_{:06d}.pth.tar'.format(config['EPOCHS']*config['STEPS_PER_EPOCH']) if USE_CUDA: training_state = torch.load(MODEL_PATH) else: training_state = torch.load(MODEL_PATH, map_location='cpu') if MODEL_PATH.endswith("tar"): model = training_state['model'] else: model = training_state net.load_state_dict(model) if USE_CUDA: net.cuda() return Disaggregator( EVALUATION_DATA_PATH=EVALUATION_DATA_PATH, TARGET_APPLIANCE = TARGET_APPLIANCE, ON_POWER_THRESHOLD = ON_POWER_THRESHOLD, MAX_TARGET_POWER = MAX_TARGET_POWER, pad_mains = True, pad_appliance = False, disagg_func = disag_seq2seq_sgn, downsample_factor = DOWNSAMPLE_FACTOR, disagg_kwargs = dict( USE_CUDA=USE_CUDA, model = net, input_processing=input_processing_steps, target_processing=target_processing_steps, n_seq_per_batch = NUM_SEQ_PER_BATCH, seq_length = SEQ_LENGTH, target_seq_length = TARGET_SEQ_LENGTH, stride = 1 ) ), training_state