Esempio n. 1
0
def test_add_method():
    model = Sequential()

    model.add(Dense(n_nodes=32, n_inputs=45))

    model.build()

    with pytest.raises(Exception):
        model.add(Dense(n_nodes=32, n_inputs=45))
Esempio n. 2
0
from neuralpy.models import Sequential
from neuralpy.layers.convolutional import Conv2D
from neuralpy.layers.linear import Dense
from neuralpy.layers.other import Flatten
from neuralpy.layers.activation_functions import ReLU, Softmax
from neuralpy.loss_functions import CrossEntropyLoss
from neuralpy.optimizer import SGD
import torch
import torchvision
from torchvision import datasets, transforms

# Create a Sequential model Instance
model = Sequential()

#Build your network
model.add(Conv2D(input_shape=(1, 28, 28), filters=128, kernel_size=3))
model.add(ReLU())
model.add(Conv2D(filters=64, kernel_size=3))
model.add(ReLU())
model.add(Conv2D(filters=32, kernel_size=3))
model.add(ReLU())
model.add(Flatten())
model.add(Dense(n_nodes=10))

model.build()
model.compile(optimizer=SGD(),
              loss_function=CrossEntropyLoss(),
              metrics=["accuracy"])
print(model.summary())

#Get the MNIST dataset