Esempio n. 1
0
 def __init__(self,
              num_input_features,
              growth_rate,
              bn_size,
              drop_rate,
              memory_efficient=False):
     super(_DenseLayerCOB, self).__init__()
     self.add_module('norm1', BatchNorm2dCOB(num_input_features)),
     self.add_module('relu1', ReLUCOB(inplace=True)),
     self.add_module(
         'conv1',
         Conv2dCOB(num_input_features,
                   bn_size * growth_rate,
                   kernel_size=1,
                   stride=1,
                   bias=False)),
     self.add_module('norm2', BatchNorm2dCOB(bn_size * growth_rate)),
     self.add_module('relu2', ReLUCOB(inplace=True)),
     self.add_module(
         'conv2',
         Conv2dCOB(bn_size * growth_rate,
                   growth_rate,
                   kernel_size=3,
                   stride=1,
                   padding=1,
                   bias=False)),
     self.drop_rate = float(drop_rate)
     self.memory_efficient = memory_efficient
     self.concat = Concat()
     self.dropout = DropoutCOB(self.drop_rate)
Esempio n. 2
0
 def __init__(self, in_channels=3):
     super(DenseNet, self).__init__()
     self.conv1 = Conv2dCOB(in_channels=in_channels,
                            out_channels=3,
                            kernel_size=3,
                            padding=1)
     self.conv2 = Conv2dCOB(in_channels=3,
                            out_channels=3,
                            kernel_size=3,
                            padding=1)
     self.conv3 = Conv2dCOB(in_channels=6,
                            out_channels=3,
                            kernel_size=3,
                            padding=1)
     self.conv4 = Conv2dCOB(in_channels=3,
                            out_channels=3,
                            kernel_size=3,
                            padding=1)
     self.relu1 = ReLUCOB()
     self.relu2 = ReLUCOB()
     self.relu3 = ReLUCOB()
     self.relu4 = ReLUCOB()
     self.concat1 = Concat()
     self.flatten = FlattenCOB()
     self.fc1 = LinearCOB(in_channels * 32 * 32, 10)
Esempio n. 3
0
    def __init__(self, in_ch, out_ch, bilinear=False):
        super().__init__()
        self.upsample = None
        if bilinear:
            self.upsample = UpsampleCOB(scale_factor=2, mode='bilinear', align_corners=True)
        else:
            self.upsample = ConvTranspose2dCOB(in_ch, in_ch // 2, kernel_size=2, stride=2)

        self.conv = DoubleConvCOB(in_ch, out_ch)
        self.cat = Concat()
Esempio n. 4
0
 def __init__(self,
              num_layers,
              num_input_features,
              bn_size,
              growth_rate,
              drop_rate,
              memory_efficient=False):
     super(_DenseBlockCOB, self).__init__()
     for i in range(num_layers):
         layer = _DenseLayerCOB(
             num_input_features + i * growth_rate,
             growth_rate=growth_rate,
             bn_size=bn_size,
             drop_rate=drop_rate,
             memory_efficient=memory_efficient,
         )
         self.add_module('denselayer%d' % (i + 1), layer)
     self.concat = Concat()
Esempio n. 5
0
 def __init__(self):
     super(DenseNet4, self).__init__()
     self.conv1 = Conv2dCOB(in_channels=1,
                            out_channels=3,
                            kernel_size=3,
                            padding=1)
     self.conv2 = Conv2dCOB(in_channels=3,
                            out_channels=3,
                            kernel_size=3,
                            padding=1)
     self.conv3 = Conv2dCOB(in_channels=6,
                            out_channels=3,
                            kernel_size=3,
                            padding=1)
     self.relu1 = ReLUCOB()
     self.relu2 = ReLUCOB()
     self.relu3 = ReLUCOB()
     self.concat1 = Concat()
Esempio n. 6
0
 def __init__(self):
     super(SplitConcatModel, self).__init__()
     self.conv1 = Conv2dCOB(in_channels=1,
                            out_channels=3,
                            kernel_size=3,
                            padding=1)
     self.conv21 = Conv2dCOB(in_channels=3,
                             out_channels=3,
                             kernel_size=3,
                             padding=1)
     self.conv22 = Conv2dCOB(in_channels=3,
                             out_channels=3,
                             kernel_size=3,
                             padding=1)
     self.conv3 = Conv2dCOB(in_channels=6,
                            out_channels=3,
                            kernel_size=3,
                            padding=1)
     self.relu1 = ReLUCOB()
     self.relu21 = ReLUCOB()
     self.relu22 = ReLUCOB()
     self.concat1 = Concat()