Esempio n. 1
0
def GeneticAlgorithm(sid,ignore_result=False):
    desdata = DesignModel.objects.get(SID=sid)

    subject = "NeuroDesign: optimisation process started"
    sender = "NeuroDesign"
    sendermail = "*****@*****.**"
    message = "Your design optimisation has now started.  You can follow the progress here:"+" http://development.neuropowertools.org/design/runGA/?retrieve="+str(desdata.shareID)+". Thank you for using NeuroDesign."
    recipient = str(desdata.email)
    key = settings.MAILGUN_KEY

    command = "curl -s --user '" + key + "' https://api.mailgun.net/v3/neuropowertools.org/messages -F from='" + sender + \
        " <" + sendermail + ">' -F to=" + recipient + " -F subject="+subject+" -F text='" + message + "'"
    os.system(command)


    matrices = probs_and_cons(sid)

    if desdata.ITImodel == 1:
        model = "fixed"
        ITImean = desdata.ITIfixed
        ITImin = None
        ITImax = None
    elif desdata.ITImodel == 2:
        model = "exponential"
        ITImean = desdata.ITItruncmean
        ITImin = desdata.ITItruncmin
        ITImax = desdata.ITItruncmax
    elif desdata.ITImodel == 3:
        model = "uniform"
        ITImin = desdata.ITIunifmin
        ITImax = desdata.ITIunifmax
        ITImean = (desdata.ITIunifmin+desdata.ITIunifmax)/2.

    EXP = geneticalgorithm.experiment(
        TR = desdata.TR,
        n_trials = desdata.L,
        P = matrices['P'],
        C = matrices['C'],
        duration = desdata.duration,
        n_stimuli = desdata.S,
        rho = desdata.rho,
        resolution = desdata.resolution,
        stim_duration = desdata.stim_duration,
        restnum = desdata.RestNum,
        restdur = desdata.RestDur,
        ITImodel = model,
        ITImin = ITImin,
        ITImean = ITImean,
        ITImax = ITImax,
        maxrep = desdata.MaxRepeat,
        hardprob = desdata.HardProb,
        t_prestim = desdata.t_prestim,
        t_poststim = desdata.t_poststim
    )

    seed = np.random.randint(10000)
    POP = geneticalgorithm.population(
        experiment = EXP,
        confoundorder = desdata.ConfoundOrder,
        G = desdata.G,
        R = [0.4,0.4,0.2],
        q = desdata.q,
        weights = desdata.W,
        I = desdata.I,
        preruncycles = desdata.preruncycles,
        cycles = desdata.cycles,
        convergence=desdata.conv_crit,
        folder=desdata.onsetsfolder,
        Aoptimality = True if desdata.Aoptimality == 1 else False,
        seed=seed
    )

    POP.print_cmd()
    desdata = DesignModel.objects.get(SID=sid)
    runform = DesignRunForm(None, instance=desdata)
    form = runform.save(commit=False)
    form.running = 1
    form.seed = seed
    form.cmd = POP.cmd
    form.save()

    POP.naturalselection()
    POP.download()

    # Select optimal design
    desdata = DesignModel.objects.get(SID=sid)
    runform = DesignRunForm(None, instance=desdata)
    form = runform.save(commit=False)
    form.convergence = POP.finished
    form.zip_filename = POP.zip_filename
    form.zipfile = POP.file
    form.save()

    subject = "NeuroDesign: optimisation process ended"
    sender = "NeuroDesign"
    sendermail = "*****@*****.**"
    message = "Your design optimisation has now ended.  You can download the results here:"+" http://development.neuropowertools.org/design/runGA/?retrieve="+str(desdata.SID)+". Thank you for using NeuroDesign."
    recipient = str(desdata.email)
    key = settings.MAILGUN_KEY

    command = "curl -s --user '" + key + "' https://api.mailgun.net/v3/neuropowertools.org/messages -F from='" + sender + \
        " <" + sendermail + ">' -F to=" + recipient + " -F subject="+subject+" -F text='" + message + "'"
    os.system(command)
Esempio n. 2
0
from neurodesign import geneticalgorithm, generate, msequence, report

EXP = geneticalgorithm.experiment(TR=2,
                                  n_trials=100,
                                  P=[0.33, 0.33, 0.33],
                                  C=[[1, 0, 0], [0, 1, 0], [0, 0, 1],
                                     [1, -1, 0], [0, 1, -1]],
                                  n_stimuli=3,
                                  rho=0.3,
                                  resolution=1,
                                  stim_duration=1,
                                  t_pre=0,
                                  t_post=2,
                                  restnum=0,
                                  restdur=0,
                                  ITImodel="exponential",
                                  ITImin=1,
                                  ITImean=2,
                                  ITImax=4)

POP = geneticalgorithm.population(
    experiment=EXP,
    weights=[0, 0.5, 0.25, 0.25],
    preruncycles=20,
    cycles=20,
    seed=1,
    outdes=5,
    folder=
    '/Users/Joke/Documents/Onderzoek/ProjectsOngoing/Neuropower/playground/design'
)
Esempio n. 3
0
EXP = geneticalgorithm.experiment(
    TR=1,
    duration=360,
    P=[0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667],
    C=[
        [1, 0, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0],
        [0, 0, 1, 0, 0, 0],
        [0, 0, 0, 1, 0, 0],
        [0, 0, 0, 0, 1, 0],
        [0, 0, 0, 0, 0, 1],
        [1, -1, 0, 0, 0, 0],
        [1, 0, -1, 0, 0, 0],
        [1, 0, 0, -1, 0, 0],
        [1, 0, 0, 0, -1, 0],
        [1, 0, 0, 0, 0, -1],
        [0, 1, -1, 0, 0, 0],
        [0, 1, 0, -1, 0, 0],
        [0, 1, 0, 0, -1, 0],
        [0, 1, 0, 0, 0, -1],
        [0, 0, 1, -1, 0, 0],
        [0, 0, 1, 0, -1, 0],
        [0, 0, 1, 0, 0, -1],
        [0, 0, 0, 1, -1, 0],
        [0, 0, 0, 1, 0, -1],
        [0, 0, 0, 0, 1, -1],
    ],
    n_stimuli=6,
    rho=0.3,
    resolution=0.1,
    stim_duration=1,
    t_pre=0,
    t_post=2,
    ITImodel="exponential",
    ITImin=2,
    ITImean=3,
    ITImax=6)
Esempio n. 4
0
from neurodesign import geneticalgorithm, generate, msequence
import numpy as np

# define experimental setup

EXP = geneticalgorithm.experiment(TR=2,
                                  n_trials=20,
                                  P=[0.3, 0.3, 0.4],
                                  C=[[1, -1, 0], [0, 1, -1]],
                                  n_stimuli=3,
                                  rho=0.3,
                                  stim_duration=1,
                                  t_pre=0.5,
                                  t_post=2,
                                  ITImodel="uniform",
                                  ITImin=2,
                                  ITImax=4)

# define first design with a fixed ITI

DES = geneticalgorithm.design(
    order=[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1],
    ITI=[2] * 20,
    experiment=EXP)

# expand to design matrix

DES.designmatrix()
DES.FCalc(weights=[0, 0.5, 0.25, 0.25])
DES.FdCalc()
DES.FcCalc()
Esempio n. 5
0
def GeneticAlgorithm(sid,ignore_result=False):
    desdata = DesignModel.objects.filter(SID=sid).last()

    matrices = probs_and_cons(sid)

    if desdata.ITImodel == 1:
        model = "fixed"
        ITImean = desdata.ITIfixed
        ITImin = None
        ITImax = None
    elif desdata.ITImodel == 2:
        model = "exponential"
        ITImean = desdata.ITItruncmean
        ITImin = desdata.ITItruncmin
        ITImax = desdata.ITItruncmax
    elif desdata.ITImodel == 3:
        model = "uniform"
        ITImin = desdata.ITIunifmin
        ITImax = desdata.ITIunifmax
        ITImean = (desdata.ITIunifmin+desdata.ITIunifmax)/2.

    if (desdata.MaxRepeat<4 and desdata.S<5) or desdata.S==2:
        R = [0,1,0]
    else:
        R = [0.4,0.4,0.2]
    print("R: "+str(R))

    EXP = geneticalgorithm.experiment(
        TR = desdata.TR,
        n_trials = desdata.L,
        P = matrices['P'],
        C = matrices['C'],
        duration = desdata.duration,
        n_stimuli = desdata.S,
        rho = desdata.rho,
        resolution = desdata.resolution,
        stim_duration = desdata.stim_duration,
        restnum = desdata.RestNum,
        restdur = desdata.RestDur,
        ITImodel = model,
        ITImin = ITImin,
        ITImean = ITImean,
        ITImax = ITImax,
        confoundorder = desdata.ConfoundOrder,
        maxrep = desdata.MaxRepeat,
        hardprob = desdata.HardProb,
        t_pre = desdata.t_prestim,
        t_post = desdata.t_poststim
    )

    seed = np.random.randint(10000)
    POP = geneticalgorithm.population(
        experiment = EXP,
        G = desdata.G,
        R = R,
        q = desdata.q,
        weights = desdata.W,
        I = desdata.I,
        preruncycles = desdata.preruncycles,
        cycles = desdata.cycles,
        convergence=desdata.conv_crit,
        folder=desdata.onsets_folder,
        outdes=desdata.outdes,
        Aoptimality = True if desdata.Aoptimality == 1 else False,
        seed=seed
    )

    POP.print_cmd()
    desdata = DesignModel.objects.filter(SID=sid).last()
    runform = DesignRunForm(None, instance=desdata)
    form = runform.save(commit=False)
    form.taskstatus = 2
    form.running = 1
    form.seed = seed
    form.cmd = POP.cmd
    form.save()

    local_naturalselection(POP,sid)
    POP.download()
    desdata = DesignModel.objects.filter(SID=sid).last()
    runform = DesignRunForm(None, instance=desdata)
    form = runform.save(commit=False)
    form.finished = True
    form.running = 0
    form.taskstatus = 3
    form.save()

    # list all files (with full path) for report
    infiles = [os.path.join(dp, f) for dp, dn, fn in os.walk(os.path.expanduser(desdata.onsets_folder)) for f in fn]
    # strip away /var/tmp --> design_suffix/xxx
    outfiles = [x[9:] for x in infiles]
    for file in range(len(infiles)):
        push_to_s3(infiles[file],"designs/"+outfiles[file])

    # Select optimal design
    desdata = DesignModel.objects.filter(SID=sid).last()
    runform = DesignRunForm(None, instance=desdata)
    form = runform.save(commit=False)
    form.convergence = POP.finished
    form.files = outfiles
    form.save()

    subject = "NeuroDesign: optimisation process ended"
    sender = "NeuroDesign"
    sendermail = "*****@*****.**"
    message = "Your design optimisation has now ended.  You can download the results here:"+" http://www.neuropowertools.org/design/runGA/?retrieve="+str(desdata.shareID)+". Thank you for using NeuroDesign."
    recipient = str(desdata.email)
    #recipient = '*****@*****.**'
    key = settings.MAILGUN_KEY

    command = "curl -s --user '" + key + "' https://api.mailgun.net/v3/neuropowertools.org/messages -F from='" + sender + \
        " <" + sendermail + ">' -F to=" + recipient + " -F subject="+subject+" -F text='" + message + "'"
    os.system(command)