Esempio n. 1
0
def test_ivp_legacy_signature():
    with warns(FutureWarning):
        IVP(0, x_0=1)
    with warns(FutureWarning):
        IVP(0, 1, x_0_prime=2)
    with warns(FutureWarning):
        IVP(0, x_0=1, x_0_prime=2)
    with raises(KeyError):
        IVP(0, x_0=1, u_0=2)
    with raises(KeyError):
        IVP(0, x_0_prime=1, u_0_prime=2)
Esempio n. 2
0
def test_ensemble_condition(x0, x1, y0, y1, ones, net12):
    cond = EnsembleCondition(
        IVP(x0, y0),
        IVP(x1, y0, y1),
    )

    x = x0 * ones
    y = cond.enforce(net12, x)
    ya = y[:, 0:1]
    assert all_close(ya, y0), "y(x_0) != y_0"
    x = x1 * ones
    y = cond.enforce(net12, x)
    yb = y[:, 1:2]
    assert all_close(yb, y0), "y(x_0) != y_0"
    assert all_close(diff(yb, x), y1), "y'(x_0) != y'_0"

    net12 = FCNN(1, 1)
    cond = EnsembleCondition(IVP(x0, y0), )
    x = x0 * ones
    y = cond.enforce(net12, x)
    assert all_close(y, y0), "y(x_0) != y_0"
Esempio n. 3
0
def test_ivp(x0, y0, y1, ones, net11):
    x = x0 * ones
    cond = IVP(x0, y0)
    y = cond.enforce(net11, x)
    assert torch.isclose(y, y0 * ones).all(), "y(x_0) != y_0"

    cond = IVP(x0, y0, y1)
    y = cond.enforce(net11, x)
    assert all_close(y, y0), "y(x_0) != y_0"
    assert all_close(diff(y, x), y1), "y'(x_0) != y'_0"
Esempio n. 4
0
def test_ivp():
    x = x0 * ones
    net = FCNN(1, 1)

    cond = IVP(x0, y0)
    y = cond.enforce(net, x)
    assert torch.isclose(y, y0 * ones).all(), "y(x_0) != y_0"

    cond = IVP(x0, y0, y1)
    y = cond.enforce(net, x)
    assert all_close(y, y0), "y(x_0) != y_0"
    assert all_close(diff(y, x), y1), "y'(x_0) != y'_0"
Esempio n. 5
0
def test_ibvp_1d():
    t0, t1 = random.random(), random.random()

    u00, u01, u10, u11 = [random.random() for _ in range(4)]

    # set the initial condition ut0(x) = u(x, t0)
    net_ut0 = FCNN(1, 1)
    cond_ut0 = DirichletBVP(x0, u00, x1, u10)
    ut0 = lambda x: cond_ut0.enforce(net_ut0, x)

    # set the Dirichlet boundary conditions g(t) = u(x0, t) and h(t) = u(x1, t)
    net_g, net_h = FCNN(1, 1), FCNN(1, 1)
    cond_g = IVP(t0, u00)
    cond_h = IVP(t0, u10)
    g = lambda t: cond_g.enforce(net_g, t)
    h = lambda t: cond_h.enforce(net_h, t)

    # set the Neumann boundary conditions p(t) = u'_x(x0, t) and q(t) = u'_x(x1, t)
    x = x0 * ones
    p0 = diff(ut0(x), x)[0, 0].item()
    x = x1 * ones
    q0 = diff(ut0(x), x)[0, 0].item()
    p1, q1 = random.random(), random.random()
    net_p, net_q = FCNN(1, 1), FCNN(1, 1)
    cond_p = DirichletBVP(t0, p0, t1, p1)
    cond_q = DirichletBVP(t0, q0, t1, q1)
    p = lambda t: cond_p.enforce(net_p, t)
    q = lambda t: cond_q.enforce(net_q, t)

    # initialize a random network
    net = FCNN(2, 1)

    # test Dirichlet-Dirichlet condition
    condition = IBVP1D(x0, x1, t0, ut0, x_min_val=g, x_max_val=h)
    x = torch.linspace(x0, x1, N_SAMPLES, requires_grad=True).view(-1, 1)
    t = t0 * ones
    assert all_close(condition.enforce(net, x, t),
                     ut0(x)), "initial condition not satisfied"
    x = x0 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(condition.enforce(net, x, t),
                     g(t)), "left Dirichlet BC not satisfied"
    x = x1 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(condition.enforce(net, x, t),
                     h(t)), "right Dirichlet BC not satisfied"

    # test Dirichlet-Neumann condition
    condition = IBVP1D(x0, x1, t0, ut0, x_min_val=g, x_max_prime=q)
    x = torch.linspace(x0, x1, N_SAMPLES, requires_grad=True).view(-1, 1)
    t = t0 * ones
    assert all_close(condition.enforce(net, x, t),
                     ut0(x)), "initial condition not satisfied"
    x = x0 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(condition.enforce(net, x, t),
                     g(t)), "left Dirichlet BC not satisfied"
    x = x1 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(diff(condition.enforce(net, x, t), x),
                     q(t)), "right Neumann BC not satisfied"

    # test Neumann-Dirichlet condition
    condition = IBVP1D(x0, x1, t0, ut0, x_min_prime=p, x_max_val=h)
    x = torch.linspace(x0, x1, N_SAMPLES, requires_grad=True).view(-1, 1)
    t = t0 * ones
    assert all_close(condition.enforce(net, x, t),
                     ut0(x)), "initial condition not satisfied"
    x = x0 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(diff(condition.enforce(net, x, t), x),
                     p(t)), "left Neumann BC not satisfied"
    x = x1 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(condition.enforce(net, x, t),
                     h(t)), "right Dirichlet BC not satisfied"

    # test Neumann-Neumann condition
    condition = IBVP1D(x0, x1, t0, ut0, x_min_prime=p, x_max_prime=q)
    x = torch.linspace(x0, x1, N_SAMPLES, requires_grad=True).view(-1, 1)
    t = t0 * ones
    assert all_close(condition.enforce(net, x, t),
                     ut0(x)), "initial condition not satisfied"
    x = x0 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(diff(condition.enforce(net, x, t), x),
                     p(t)), "left Neumann BC not satisfied"
    x = x1 * ones
    t = torch.linspace(t0, t1, N_SAMPLES, requires_grad=True).view(-1, 1)
    assert all_close(diff(condition.enforce(net, x, t), x),
                     q(t)), "right Neumann BC not satisfied"

    # test unimplemented combination of conditions
    with raises(NotImplementedError):
        IBVP1D(
            t_min=0,
            t_min_val=lambda x: 0,
            x_min=0,
            x_min_val=None,
            x_min_prime=None,
            x_max=1,
            x_max_val=None,
            x_max_prime=None,
        )
    with raises(NotImplementedError):
        IBVP1D(
            t_min=0,
            t_min_val=lambda x: 0,
            x_min=0,
            x_min_val=lambda t: 0,
            x_min_prime=lambda t: 0,
            x_max=1,
            x_max_val=None,
            x_max_prime=None,
        )
    with raises(NotImplementedError):
        IBVP1D(
            t_min=0,
            t_min_val=lambda x: 0,
            x_min=0,
            x_min_val=None,
            x_min_prime=lambda t: 0,
            x_max=1,
            x_max_val=None,
            x_max_prime=None,
        )
Esempio n. 6
0
import numpy as np
import torch
from neurodiffeq import diff
from neurodiffeq.networks import FCNN
from neurodiffeq.conditions import IVP, NoCondition
from neurodiffeq.generators import Generator1D
from neurodiffeq.solvers import GenericSolver, GenericSolution, BaseSolver
from neurodiffeq.solvers import Solver1D, Solver2D, SolverSpherical
from neurodiffeq.solvers import SolutionSphericalHarmonics

SPECIFIC_SOLVERS = [Solver1D, Solver2D, SolverSpherical]

N_SAMPLES = 64
T_MIN, T_MAX = 0.0, 1.0
DIFF_EQS = lambda u, t: [diff(u, t) + u]
CONDITIONS = [IVP(0, 1)]


@pytest.fixture
def generators():
    return dict(
        train=Generator1D(64, t_min=T_MIN, t_max=T_MAX, method='uniform'),
        valid=Generator1D(64, t_min=T_MIN, t_max=T_MAX, method='equally-spaced'),
    )


@pytest.fixture
def solver(generators):
    return GenericSolver(
        diff_eqs=DIFF_EQS,
        conditions=CONDITIONS,