Esempio n. 1
0
def test_signal_findpeaks():

    signal1 = np.cos(np.linspace(start=0, stop=30, num=1000))
    info1 = nk.signal_findpeaks(signal1)

    signal2 = np.concatenate([np.arange(0, 20, 0.1), np.arange(17, 30, 0.1), np.arange(30, 10, -0.1)])
    info2 = nk.signal_findpeaks(signal2)
    assert len(info1["Peaks"]) > len(info2["Peaks"])
Esempio n. 2
0
def test_ecg_simulate():

    ecg1 = nk.ecg_simulate(duration=20, length=5000)
    assert len(ecg1) == 5000

    ecg2 = nk.ecg_simulate(duration=20, length=5000, heart_rate=500)
#    pd.DataFrame({"ECG1":ecg1, "ECG2": ecg2}).plot()
#    pd.DataFrame({"ECG1":ecg1, "ECG2": ecg2}).hist()
    assert len(nk.signal_findpeaks(ecg1)[0]) < len(nk.signal_findpeaks(ecg2)[0])
Esempio n. 3
0
def test_eda_simulate():

    eda1 = nk.eda_simulate(duration=10, length=None, scr_number=1, random_state=333)
    assert len(nk.signal_findpeaks(eda1, height_min=0.6)["Peaks"]) == 1

    eda2 = nk.eda_simulate(duration=10, length=None, scr_number=5, random_state=333)
    assert len(nk.signal_findpeaks(eda2, height_min=0.6)["Peaks"]) == 5
#   pd.DataFrame({"EDA1": eda1, "EDA2": eda2}).plot()

    assert len(nk.signal_findpeaks(eda2, height_min=0.6)["Peaks"]) > len(nk.signal_findpeaks(eda1, height_min=0.6)["Peaks"])
Esempio n. 4
0
def test_eda_simulate():

    eda1 = nk.eda_simulate(duration=10, length=None, n_peaks=1)
    assert len(nk.signal_findpeaks(eda1, height_min=0.6)[0]) == 1

    eda2 = nk.eda_simulate(duration=10, length=None, n_peaks=5)
    assert len(nk.signal_findpeaks(eda2, height_min=0.6)[0]) == 5
    #   pd.DataFrame({"EDA1": eda1, "EDA2": eda2}).plot()

    assert len(nk.signal_findpeaks(eda2, height_min=0.6)[0]) > len(
        nk.signal_findpeaks(eda1, height_min=0.6)[0])
Esempio n. 5
0
def test_emg_simulate():

    emg1 = nk.emg_simulate(duration=20, length=5000, n_bursts=1)
    assert len(emg1) == 5000

    emg2 = nk.emg_simulate(duration=20, length=5000, n_bursts=15)
    assert scipy.stats.median_absolute_deviation(emg1) < scipy.stats.median_absolute_deviation(emg2)

    emg3 = nk.emg_simulate(duration=20, length=5000, n_bursts=1, duration_bursts=2.0)
#    pd.DataFrame({"EMG1":emg1, "EMG3": emg3}).plot()
    assert len(nk.signal_findpeaks(emg3, height_min=1.0)["Peaks"]) > len(nk.signal_findpeaks(emg1, height_min=1.0)["Peaks"])
Esempio n. 6
0
def test_ecg_simulate():

    ecg1 = nk.ecg_simulate(duration=20, length=5000, method="simple", noise=0)
    assert len(ecg1) == 5000

    ecg2 = nk.ecg_simulate(duration=20, length=5000, heart_rate=500)
    #    pd.DataFrame({"ECG1":ecg1, "ECG2": ecg2}).plot()
    #    pd.DataFrame({"ECG1":ecg1, "ECG2": ecg2}).hist()
    assert (len(nk.signal_findpeaks(ecg1, height_min=0.6)["Peaks"]) < len(
        nk.signal_findpeaks(ecg2, height_min=0.6)["Peaks"]))

    ecg3 = nk.ecg_simulate(duration=10, length=5000)
    #    pd.DataFrame({"ECG1":ecg1, "ECG3": ecg3}).plot()
    assert (len(nk.signal_findpeaks(ecg2, height_min=0.6)["Peaks"]) > len(
        nk.signal_findpeaks(ecg3, height_min=0.6)["Peaks"]))
Esempio n. 7
0
def test_rsp_simulate():
    rsp1 = nk.rsp_simulate(duration=20, length=3000)
    assert len(rsp1) == 3000

    rsp2 = nk.rsp_simulate(duration=20, length=3000, respiratory_rate=80)
#    pd.DataFrame({"RSP1":rsp1, "RSP2":rsp2}).plot()
#    pd.DataFrame({"RSP1":rsp1, "RSP2":rsp2}).hist()
    assert (len(nk.signal_findpeaks(rsp1, height_min=0.2)[0]) <
            len(nk.signal_findpeaks(rsp2, height_min=0.2)[0]))

    rsp3 = nk.rsp_simulate(duration=20, length=3000, method="sinusoidal")
    rsp4 = nk.rsp_simulate(duration=20, length=3000, method="breathmetrics")
#    pd.DataFrame({"RSP3":rsp3, "RSP4":rsp4}).plot()
    assert (len(nk.signal_findpeaks(rsp3, height_min=0.2)[0]) >
            len(nk.signal_findpeaks(rsp4, height_min=0.2)[0]))
Esempio n. 8
0
def test_signal_rate():  # since singal_rate wraps signal_period, the latter is tested as well

    # Test with array.
    duration = 10
    sampling_rate = 1000
    signal = nk.signal_simulate(duration=duration, sampling_rate=sampling_rate, frequency=1)
    info = nk.signal_findpeaks(signal)
    rate = nk.signal_rate(peaks=info["Peaks"], sampling_rate=1000, desired_length=len(signal))
    assert rate.shape[0] == duration * sampling_rate

    # Test with dictionary.produced from signal_findpeaks.
    assert info[list(info.keys())[0]].shape == (info["Peaks"].shape[0],)

    # Test with DataFrame.
    duration = 120
    sampling_rate = 1000
    rsp = nk.rsp_simulate(
        duration=duration, sampling_rate=sampling_rate, respiratory_rate=15, method="sinuosoidal", noise=0
    )
    rsp_cleaned = nk.rsp_clean(rsp, sampling_rate=sampling_rate)
    signals, info = nk.rsp_peaks(rsp_cleaned)
    rate = nk.signal_rate(signals, sampling_rate=sampling_rate, desired_length=duration * sampling_rate)
    assert rate.shape == (signals.shape[0],)

    # Test with dictionary.produced from rsp_findpeaks.
    rate = nk.signal_rate(info, sampling_rate=sampling_rate, desired_length=duration * sampling_rate)
    assert rate.shape == (duration * sampling_rate,)
Esempio n. 9
0
def test_signal_rate():

    # Test with array.
    signal = nk.signal_simulate(duration=10, sampling_rate=1000, frequency=1)
    info = nk.signal_findpeaks(signal)
    rate = nk.signal_rate(peaks=info["Peaks"],
                          sampling_rate=1000,
                          desired_length=None)
    assert rate.shape[0] == len(info["Peaks"])

    # Test with dictionary.produced from signal_findpeaks.
    assert info[list(info.keys())[0]].shape == (info["Peaks"].shape[0], )

    # Test with DataFrame.
    rsp = nk.rsp_simulate(duration=120,
                          sampling_rate=1000,
                          respiratory_rate=15,
                          method="sinuosoidal",
                          noise=0)
    rsp_cleaned = nk.rsp_clean(rsp, sampling_rate=1000)
    signals, info = nk.rsp_peaks(rsp_cleaned)
    rate = nk.signal_rate(signals, sampling_rate=1000)
    assert rate.shape == (signals.shape[0], )

    # Test with dictionary.produced from rsp_findpeaks.
    test_length = 30
    rate = nk.signal_rate(info, sampling_rate=1000, desired_length=test_length)
    assert rate.shape == (test_length, )
Esempio n. 10
0
params_scr = pd.DataFrame(
    columns=["time_peak", "rise", "decay1", "decay2", "Participant", "Task"])

for i in range(4):
    print("Task: " + str(i))

    data = pd.read_csv("../../data/eogdb/eogdb_task" + str(i + 1) + ".csv")

    for j, participant in enumerate(np.unique(data["Participant"])[1:3]):
        print("  - " + str(j + 1))

        segment = data[data["Participant"] == participant]
        signal = segment["vEOG"]

        cleaned = nk.eog_clean(signal, sampling_rate=200, method='neurokit')
        blinks = nk.signal_findpeaks(cleaned, relative_height_min=1.5)["Peaks"]

        events = nk.epochs_create(cleaned,
                                  blinks,
                                  sampling_rate=200,
                                  epochs_start=-0.4,
                                  epochs_end=0.6)
        events = nk.epochs_to_array(events)  # Convert to 2D array

        x = np.linspace(0, 100, num=len(events))

        p_gamma = np.full((events.shape[1], 3), np.nan)
        p_bateman = np.full((events.shape[1], 3), np.nan)
        p_scr = np.full((events.shape[1], 4), np.nan)

        for i in range(events.shape[1]):