Esempio n. 1
0
def generate(time: int, rate: int):
    ecg1 = nk.ecg_simulate(duration=time, sampling_rate= rate, method = "ecgsyn") # duration - ile sekund  #sampling rate - ile punktów na sekunde
    ecg2 = nk.ecg_simulate(duration=time, sampling_rate= rate, method = "ecgsyn")
    ecg3 = nk.ecg_simulate(duration=time, sampling_rate= rate, method="ecgsyn")
    ecg4 = nk.ecg_simulate(duration=time, sampling_rate= rate, method="daubechies")
    emg1 = nk.emg_simulate(duration=time, sampling_rate= rate, random_state=1, burst_number=3)
    emg2 = nk.emg_simulate(duration=time, sampling_rate= rate, random_state=2, burst_number=3)
    emg3 = nk.emg_simulate(duration=time, sampling_rate= rate, random_state=3, burst_number=3)
    emg4 = nk.emg_simulate(duration=time, sampling_rate= rate, random_state=4, burst_number=3)
    # sa jeszcze analogicznie fajne wykresy dla ppg, rsp i eda
    nk.signal_plot(ecg1, sampling_rate=rate)
    nk.signal_plot(ecg2, sampling_rate=rate)

    data = pd.DataFrame({'ecg1': ecg1,
                         'ecg2': ecg2,


                         'emg1': emg1,

                         })
    return data
Esempio n. 2
0
def test_signal_plot():

    # Test with array
    signal = nk.signal_simulate(duration=10, sampling_rate=1000)
    nk.signal_plot(signal, sampling_rate=1000)
    fig = plt.gcf()
    for ax in fig.get_axes():
        handles, labels = ax.get_legend_handles_labels()
    assert labels == ['Signal']
    assert len(labels) == len(handles) == len([signal])
    assert ax.get_xlabel() == 'Time (s)'
    plt.close(fig)

    # Test with dataframe
    data = pd.DataFrame({
        "Signal2":
        np.cos(np.linspace(start=0, stop=20, num=1000)),
        "Signal3":
        np.sin(np.linspace(start=0, stop=20, num=1000)),
        "Signal4":
        nk.signal_binarize(np.cos(np.linspace(start=0, stop=40, num=1000)))
    })
    nk.signal_plot(data, sampling_rate=None)
    fig = plt.gcf()
    for ax in fig.get_axes():
        handles, labels = ax.get_legend_handles_labels()
    assert labels == list(data.columns.values)
    assert len(labels) == len(handles) == len(data.columns)
    assert ax.get_xlabel() == 'Samples'
    plt.close(fig)

    # Test with list
    signal = nk.signal_binarize(nk.signal_simulate(duration=10))
    phase = nk.signal_phase(signal, method="percents")
    nk.signal_plot([signal, phase])
    fig = plt.gcf()
    for ax in fig.get_axes():
        handles, labels = ax.get_legend_handles_labels()
    assert labels == ['Signal1', 'Signal2']
    assert len(labels) == len(handles) == len([signal, phase])
    assert ax.get_xlabel() == 'Samples'
    plt.close(fig)
Esempio n. 3
0
# Generate synthetic signals
ecg = nk.ecg_simulate(duration=10, heart_rate=70)
ppg = nk.ppg_simulate(duration=10, heart_rate=70)
rsp = nk.rsp_simulate(duration=10, respiratory_rate=15)
eda = nk.eda_simulate(duration=10, scr_number=3)
emg = nk.emg_simulate(duration=10, burst_number=2)

# Visualise biosignals
data = pd.DataFrame({
    "ECG": ecg,
    "PPG": ppg,
    "RSP": rsp,
    "EDA": eda,
    "EMG": emg
})
nk.signal_plot(data, subplots=True)

# Save it
data = pd.DataFrame({
    "ECG":
    nk.ecg_simulate(duration=10, heart_rate=70, noise=0),
    "PPG":
    nk.ppg_simulate(duration=10, heart_rate=70, powerline_amplitude=0),
    "RSP":
    nk.rsp_simulate(duration=10, respiratory_rate=15, noise=0),
    "EDA":
    nk.eda_simulate(duration=10, scr_number=3, noise=0),
    "EMG":
    nk.emg_simulate(duration=10, burst_number=2, noise=0)
})
plot = data.plot(subplots=True,
    samples = 8 * (normal1 + normal2) #facteur 8 seulement pour scaler entre 0 et 3.3

    # La valeur en Voltage d'une personne qui a une systolique normal (120), est autour de  2.8 , pour une systolique eleve(140), on est autour de 3.2 , une sytolique basse (100) est autour de 2.3
    #la valeur en Voltage d'une personne qui a une diastolique normal (80) est autour de 1.8 ,  pour une diastolique eleve(90), on est atour de 2.10, une diastolique basse (60) est autour de  1.4

    #prolongement du signal de pression selon le temps de signal voulu
    for i in range(0,int(t)):
        for y in samples:
            ech_array.append(y)

elif "re" in signaltype:
    t_sin = np.arange(t*f)
    ech_array = 1.65 * np.sin(respiration * (2 * np.pi * t_sin) / f) + 1.65 # le plus 1 est pour ne pas avoir de valeur negative
elif "pe" in signaltype:
    ech_array = genPespiration(pespiration,step,f,t)
else :
    ValueError("The f**k is that signal type ??  give me a valid one , you gave me  {}".format(signaltype))

# # Visualize
ecg = pd.DataFrame({"{}".format(signaltype): ech_array})

nk.signal_plot(ecg)
#
plt.show()

generateVHDLsamples(ech_array,signaltype)




Esempio n. 5
0
# Generate synthetic signals
ecg = nk.ecg_simulate(duration=10, heart_rate=70)
ppg = nk.ppg_simulate(duration=10, heart_rate=70)
rsp = nk.rsp_simulate(duration=10, respiratory_rate=15)
eda = nk.eda_simulate(duration=10, scr_number=3)
emg = nk.emg_simulate(duration=10, burst_number=2)

# Visualise biosignals
data = pd.DataFrame({
    "ECG": ecg,
    "PPG": ppg,
    "RSP": rsp,
    "EDA": eda,
    "EMG": emg
})
nk.signal_plot(data, subplots=True)

# Save it
data = pd.DataFrame({
    "ECG":
    nk.ecg_simulate(duration=10, heart_rate=70, noise=0),
    "PPG":
    nk.ppg_simulate(duration=10, heart_rate=70, powerline_amplitude=0),
    "RSP":
    nk.rsp_simulate(duration=10, respiratory_rate=15, noise=0),
    "EDA":
    nk.eda_simulate(duration=10, scr_number=3, noise=0),
    "EMG":
    nk.emg_simulate(duration=10, burst_number=2, noise=0)
})
plot = data.plot(subplots=True,
Esempio n. 6
0
# Generate synthetic signals
ecg = nk.ecg_simulate(duration=10, heart_rate=70)
ppg = nk.ppg_simulate(duration=10, heart_rate=70)
rsp = nk.rsp_simulate(duration=10, respiratory_rate=15)
eda = nk.eda_simulate(duration=10, scr_number=3)
emg = nk.emg_simulate(duration=10, burst_number=2)

# Visualise biosignals
data = pd.DataFrame({
    "ECG": ecg,
    "PPG": ppg,
    "RSP": rsp,
    "EDA": eda,
    "EMG": emg
})
nk.signal_plot(data, subplots=True)

# Save it
data = pd.DataFrame({
    "ECG":
    nk.ecg_simulate(duration=10, heart_rate=70, noise=0),
    "PPG":
    nk.ppg_simulate(duration=10, heart_rate=70, powerline_amplitude=0),
    "RSP":
    nk.rsp_simulate(duration=10, respiratory_rate=15, noise=0),
    "EDA":
    nk.eda_simulate(duration=10, scr_number=3, noise=0),
    "EMG":
    nk.emg_simulate(duration=10, burst_number=2, noise=0)
})
plot = data.plot(subplots=True,