Esempio n. 1
0
def test_signal_resample():

    signal = np.cos(np.linspace(start=0, stop=20, num=50))

    downsampled_interpolation = nk.signal_resample(signal,
                                                   method="interpolation",
                                                   sampling_rate=1000,
                                                   desired_sampling_rate=500)
    downsampled_numpy = nk.signal_resample(signal,
                                           method="numpy",
                                           sampling_rate=1000,
                                           desired_sampling_rate=500)
    downsampled_pandas = nk.signal_resample(signal,
                                            method="pandas",
                                            sampling_rate=1000,
                                            desired_sampling_rate=500)
    downsampled_fft = nk.signal_resample(signal,
                                         method="FFT",
                                         sampling_rate=1000,
                                         desired_sampling_rate=500)
    downsampled_poly = nk.signal_resample(signal,
                                          method="poly",
                                          sampling_rate=1000,
                                          desired_sampling_rate=500)

    # Upsample
    upsampled_interpolation = nk.signal_resample(downsampled_interpolation,
                                                 method="interpolation",
                                                 sampling_rate=500,
                                                 desired_sampling_rate=1000)
    upsampled_numpy = nk.signal_resample(downsampled_numpy,
                                         method="numpy",
                                         sampling_rate=500,
                                         desired_sampling_rate=1000)
    upsampled_pandas = nk.signal_resample(downsampled_pandas,
                                          method="pandas",
                                          sampling_rate=500,
                                          desired_sampling_rate=1000)
    upsampled_fft = nk.signal_resample(downsampled_fft,
                                       method="FFT",
                                       sampling_rate=500,
                                       desired_sampling_rate=1000)
    upsampled_poly = nk.signal_resample(downsampled_poly,
                                        method="poly",
                                        sampling_rate=500,
                                        desired_sampling_rate=1000)

    # Check
    rez = pd.DataFrame({
        "Interpolation": upsampled_interpolation - signal,
        "Numpy": upsampled_numpy - signal,
        "Pandas": upsampled_pandas - signal,
        "FFT": upsampled_fft - signal,
        "Poly": upsampled_poly - signal
    })
    assert np.allclose(np.mean(rez.mean()), 0.0001, atol=0.0001)
Esempio n. 2
0
def test_hrv_frequency():
    # Test frequency domain
    ecg1 = nk.ecg_simulate(duration=60,
                           sampling_rate=2000,
                           heart_rate=70,
                           random_state=42)
    _, peaks1 = nk.ecg_process(ecg1, sampling_rate=2000)
    hrv1 = nk.hrv_frequency(peaks1, sampling_rate=2000)

    ecg2 = nk.signal_resample(ecg1,
                              sampling_rate=2000,
                              desired_sampling_rate=500)
    _, peaks2 = nk.ecg_process(ecg2, sampling_rate=500)
    hrv2 = nk.hrv_frequency(peaks2, sampling_rate=500)

    assert np.allclose(hrv1["HRV_HF"] - hrv2["HRV_HF"], 0, atol=1.5)
    assert np.isnan(hrv1["HRV_LF"][0])
    assert np.isnan(hrv2["HRV_LF"][0])
    assert np.isnan(hrv1["HRV_VLF"][0])
    assert np.isnan(hrv2["HRV_LF"][0])

    # Test warning on too short duration
    with pytest.warns(nk.misc.NeuroKitWarning,
                      match=r"The duration of recording is too short.*"):
        ecg3 = nk.ecg_simulate(duration=10,
                               sampling_rate=2000,
                               heart_rate=70,
                               random_state=42)
        _, peaks3 = nk.ecg_process(ecg3, sampling_rate=2000)
        nk.hrv_frequency(peaks3, sampling_rate=2000, silent=False)
def resampling_data_signal(data: Dict[str, Dict[str, np.array]], sampling_rate: int, desired_sampling_rate: int, method: str = 'interpolation') -> Dict[str, Dict[str, object]]:
    output = defaultdict(dict)
    for participant_id, dataset in data.items():
        for task_id, signal_data in dataset.items():
            resampled_signal = nk.signal_resample(signal_data, method = method, sampling_rate = sampling_rate, desired_sampling_rate = desired_sampling_rate)
            output[participant_id][task_id] = resampled_signal
    return output
Esempio n. 4
0
def process_eda(eda, show_fig=False):
    """
        Resample EDA signal from 4 Hz to 64 Hz.
        Compute EDA signal features (more info: https://neurokit2.readthedocs.io/en/latest/functions.html#module-neurokit2.eda).

        Parameters
        ----------
        eda : dict [timestamp : value]
            EDA signal.
        show_fig : bool
            set if plot specific features.

        Returns
        -------
        eda_signals : DataFrame
        eda_info : dict
    """

    eda_signal = nk.signal_resample(eda['value'],
                                    sampling_rate=4,
                                    desired_sampling_rate=64)
    eda_signals, eda_info = nk.eda_process(eda_signal, sampling_rate=64)

    if show_fig:
        plt.plot(eda_signals['EDA_Phasic'], label='fázická složka')
        plt.plot(eda_signals['EDA_Tonic'], label='tónická složka')
        plt.plot(eda_signals['EDA_Raw'], label='původní')
        plt.xlabel('Vzorek [n]')
        plt.ylabel('EDA [uS]')
        plt.legend()
        plt.show()

    return eda_signals, eda_info
Esempio n. 5
0
def test_ecg_hrv():
    ecg_slow = nk.ecg_simulate(duration=60,
                               sampling_rate=1000,
                               heart_rate=70,
                               random_state=42)
    ecg_fast = nk.ecg_simulate(duration=60,
                               sampling_rate=1000,
                               heart_rate=110,
                               random_state=42)

    ecg_slow, _ = nk.ecg_process(ecg_slow, sampling_rate=1000)
    ecg_fast, _ = nk.ecg_process(ecg_fast, sampling_rate=1000)

    ecg_slow_hrv = nk.ecg_hrv(ecg_slow, sampling_rate=1000)
    ecg_fast_hrv = nk.ecg_hrv(ecg_fast, sampling_rate=1000)

    assert ecg_fast_hrv["HRV_RMSSD"][0] < ecg_slow_hrv["HRV_RMSSD"][0]
    assert ecg_fast_hrv["HRV_MeanNN"][0] < ecg_slow_hrv["HRV_MeanNN"][0]
    assert ecg_fast_hrv["HRV_SDNN"][0] < ecg_slow_hrv["HRV_SDNN"][0]
    assert ecg_fast_hrv["HRV_CVNN"][0] < ecg_slow_hrv["HRV_CVNN"][0]
    assert ecg_fast_hrv["HRV_CVSD"][0] < ecg_slow_hrv["HRV_CVSD"][0]
    assert ecg_fast_hrv["HRV_MedianNN"][0] < ecg_slow_hrv["HRV_MedianNN"][0]
    assert ecg_fast_hrv["HRV_MadNN"][0] < ecg_slow_hrv["HRV_MadNN"][0]
    assert ecg_fast_hrv["HRV_MCVNN"][0] < ecg_slow_hrv["HRV_MCVNN"][0]
    assert ecg_fast_hrv["HRV_pNN50"][0] == ecg_slow_hrv["HRV_pNN50"][0]
    assert ecg_fast_hrv["HRV_pNN20"][0] < ecg_slow_hrv["HRV_pNN20"][0]
    assert ecg_fast_hrv["HRV_TINN"][0] < ecg_slow_hrv["HRV_TINN"][0]
    assert ecg_fast_hrv["HRV_HTI"][0] > ecg_slow_hrv["HRV_HTI"][0]
    assert ecg_fast_hrv["HRV_ULF"][0] == ecg_slow_hrv["HRV_ULF"][0] == 0

    assert all(elem in [
        'HRV_RMSSD', 'HRV_MeanNN', 'HRV_SDNN', 'HRV_SDSD', 'HRV_CVNN',
        'HRV_CVSD', 'HRV_MedianNN', 'HRV_MadNN', 'HRV_MCVNN', 'HRV_pNN50',
        'HRV_pNN20', 'HRV_TINN', 'HRV_HTI', 'HRV_ULF', 'HRV_VLF', 'HRV_LF',
        'HRV_HF', 'HRV_VHF', 'HRV_LFHF', 'HRV_LFn', 'HRV_HFn', 'HRV_LnHF',
        'HRV_SD1', 'HRV_SD2', 'HRV_SD2SD1', 'HRV_CSI', 'HRV_CVI',
        'HRV_CSI_Modified', 'HRV_SampEn'
    ] for elem in np.array(ecg_fast_hrv.columns.values, dtype=str))

    # Test frequency domain
    ecg1 = nk.ecg_simulate(duration=60,
                           sampling_rate=2000,
                           heart_rate=70,
                           random_state=42)
    hrv1 = nk.ecg_hrv(nk.ecg_process(ecg1, sampling_rate=2000)[0],
                      sampling_rate=2000)

    ecg2 = nk.signal_resample(ecg1,
                              sampling_rate=2000,
                              desired_sampling_rate=500)
    hrv2 = nk.ecg_hrv(nk.ecg_process(ecg2, sampling_rate=500)[0],
                      sampling_rate=500)

    assert np.allclose(np.mean(hrv1[["HRV_HF", "HRV_LF", "HRV_VLF"]].iloc[0] -
                               hrv2[["HRV_HF", "HRV_LF", "HRV_VLF"]].iloc[0]),
                       0,
                       atol=1)
Esempio n. 6
0
def test_hrv_frequency():
    # Test frequency domain
    ecg1 = nk.ecg_simulate(duration=60,
                           sampling_rate=2000,
                           heart_rate=70,
                           random_state=42)
    _, peaks1 = nk.ecg_process(ecg1, sampling_rate=2000)
    hrv1 = nk.hrv_frequency(peaks1, sampling_rate=2000)

    ecg2 = nk.signal_resample(ecg1,
                              sampling_rate=2000,
                              desired_sampling_rate=500)
    _, peaks2 = nk.ecg_process(ecg2, sampling_rate=500)
    hrv2 = nk.hrv_frequency(peaks2, sampling_rate=500)

    assert np.allclose(hrv1["HRV_HF"] - hrv2["HRV_HF"], 0, atol=1.5)
    assert np.isnan(hrv1["HRV_LF"][0])
    assert np.isnan(hrv2["HRV_LF"][0])
    assert np.isnan(hrv1["HRV_VLF"][0])
    assert np.isnan(hrv2["HRV_LF"][0])