Esempio n. 1
0
    def handle_projection(self,
                          id,
                          prePop,
                          postPop,
                          synapse,
                          hasWeights=False,
                          hasDelays=False,
                          type="projection",
                          synapse_obj=None,
                          pre_synapse_obj=None):

        if synapse_obj:
            self.nml_doc.append(synapse_obj)
        if pre_synapse_obj:
            self.nml_doc.append(pre_synapse_obj)

        proj = None

        if type == "projection":
            proj = neuroml.Projection(id=id,
                                      presynaptic_population=prePop,
                                      postsynaptic_population=postPop,
                                      synapse=synapse)
            self.network.projections.append(proj)
        elif type == "electricalProjection":
            proj = neuroml.ElectricalProjection(
                id=id,
                presynaptic_population=prePop,
                postsynaptic_population=postPop)
            self.network.electrical_projections.append(proj)
            self.projection_syns[id] = synapse
        elif type == "continuousProjection":
            proj = neuroml.ContinuousProjection(
                id=id,
                presynaptic_population=prePop,
                postsynaptic_population=postPop)
            self.network.continuous_projections.append(proj)

            if synapse_obj != None:
                self.projection_syns[id] = synapse_obj.id
            else:
                self.projection_syns[id] = synapse

            if pre_synapse_obj == None:
                pre_synapse_obj = neuroml.SilentSynapse(id="silentSyn_%s" % id)
                self.nml_doc.silent_synapses.append(pre_synapse_obj)

            self.projection_syns_pre[id] = pre_synapse_obj.id

        self.projections[id] = proj
        self.weightDelays[id] = hasWeights or hasDelays

        self.log.debug(
            "Projection: %s (%s) from %s to %s with syn: %s, weights: %s, delays: %s"
            % (id, type, prePop, postPop, synapse, hasWeights, hasDelays))
Esempio n. 2
0
def generate_WB_network(cell_id,
                        synapse_id,
                        numCells_bc,
                        connection_probability,
                        I_mean,
                        I_sigma,
                        generate_LEMS_simulation,
                        duration,
                        x_size=100,
                        y_size=100,
                        z_size=100,
                        network_id=ref + 'Network',
                        color='0 0 1',
                        connection=True,
                        temperature='37 degC',
                        validate=True,
                        dt=0.01):

    nml_doc = neuroml.NeuroMLDocument(id=network_id)
    nml_doc.includes.append(neuroml.IncludeType(href='WangBuzsaki.cell.nml'))
    nml_doc.includes.append(neuroml.IncludeType(href='WangBuzsakiSynapse.xml'))

    # Create network
    net = neuroml.Network(id=network_id,
                          type='networkWithTemperature',
                          temperature=temperature)
    net.notes = 'Network generated using libNeuroML v%s' % __version__
    nml_doc.networks.append(net)

    # Create population
    pop = neuroml.Population(id=ref + 'pop',
                             component=cell_id,
                             type='populationList',
                             size=numCells_bc)
    if color is not None:
        pop.properties.append(neuroml.Property('color', color))
    net.populations.append(pop)

    for i in range(0, numCells_bc):
        inst = neuroml.Instance(id=i)
        pop.instances.append(inst)
        inst.location = neuroml.Location(x=str(x_size * rnd.random()),
                                         y=str(y_size * rnd.random()),
                                         z=str(z_size * rnd.random()))

    # Add connections
    proj = neuroml.ContinuousProjection(id=ref + 'proj',
                                        presynaptic_population=pop.id,
                                        postsynaptic_population=pop.id)

    conn_count = 0
    for i in range(0, numCells_bc):
        for j in range(0, numCells_bc):
            if i != j and rnd.random() < connection_probability:
                connection = neuroml.ContinuousConnectionInstance(
                    id=conn_count,
                    pre_cell='../%s/%i/%s' % (pop.id, i, cell_id),
                    pre_component='silent',
                    post_cell='../%s/%i/%s' % (pop.id, j, cell_id),
                    post_component=synapse_id)
                proj.continuous_connection_instances.append(connection)
                conn_count += 1

    net.continuous_projections.append(proj)

    # make cell pop inhomogenouos (different V_init-s with voltage-clamp)
    vc_dur = 2  # ms
    for i in range(0, numCells_bc):
        tmp = -75 + (rnd.random() * 15)
        vc = neuroml.VoltageClamp(id='VClamp%i' % i,
                                  delay='0ms',
                                  duration='%ims' % vc_dur,
                                  simple_series_resistance='1e6ohm',
                                  target_voltage='%imV' % tmp)

        nml_doc.voltage_clamps.append(vc)

        input_list = neuroml.InputList(id='input_%i' % i,
                                       component='VClamp%i' % i,
                                       populations=pop.id)
        input = neuroml.Input(id=i,
                              target='../%s/%i/%s' % (pop.id, i, cell_id),
                              destination='synapses')
        input_list.input.append(input)

        net.input_lists.append(input_list)

    # Add outer input (IClamp)
    tmp = rnd.normal(I_mean, I_sigma**2,
                     numCells_bc)  # random numbers from Gaussian distribution
    for i in range(0, numCells_bc):
        pg = neuroml.PulseGenerator(id='IClamp%i' % i,
                                    delay='%ims' % vc_dur,
                                    duration='%ims' % (duration - vc_dur),
                                    amplitude='%fpA' % (tmp[i]))

        nml_doc.pulse_generators.append(pg)

        input_list = neuroml.InputList(id='input%i' % i,
                                       component='IClamp%i' % i,
                                       populations=pop.id)
        input = neuroml.Input(id=i,
                              target='../%s/%i/%s' % (pop.id, i, cell_id),
                              destination='synapses')
        input_list.input.append(input)

        net.input_lists.append(input_list)

    # Write to file
    nml_file = '%s100Cells.net.nml' % ref
    print 'Writing network file to:', nml_file, '...'
    neuroml.writers.NeuroMLWriter.write(nml_doc, nml_file)

    if validate:

        # Validate the NeuroML
        from neuroml.utils import validate_neuroml2
        validate_neuroml2(nml_file)

    if generate_LEMS_simulation:

        # Vreate a LEMSSimulation to manage creation of LEMS file
        ls = LEMSSimulation(sim_id='%sNetSim' % ref, duration=duration, dt=dt)

        # Point to network as target of simulation
        ls.assign_simulation_target(net.id)

        # Incude generated/existing NeuroML2 files
        ls.include_neuroml2_file('WangBuzsaki.cell.nml',
                                 include_included=False)
        ls.include_neuroml2_file('WangBuzsakiSynapse.xml',
                                 include_included=False)
        ls.include_neuroml2_file(nml_file, include_included=False)

        # Specify Display and output files
        disp_bc = 'display_bc'
        ls.create_display(disp_bc, 'Basket Cell Voltage trace', '-80', '40')

        of_bc = 'volts_file_bc'
        ls.create_output_file(of_bc, 'wangbuzsaki_network.dat')

        of_spikes_bc = 'spikes_bc'
        ls.create_event_output_file(of_spikes_bc,
                                    'wangbuzsaki_network_spikes.dat')

        max_traces = 9  # the 10th color in NEURON is white ...
        for i in range(numCells_bc):
            quantity = '%s/%i/%s/v' % (pop.id, i, cell_id)
            if i < max_traces:
                ls.add_line_to_display(disp_bc, 'BC %i: Vm' % i, quantity,
                                       '1mV', pynml.get_next_hex_color())
            ls.add_column_to_output_file(of_bc, 'v_%i' % i, quantity)
            ls.add_selection_to_event_output_file(of_spikes_bc,
                                                  i,
                                                  select='%s/%i/%s' %
                                                  (pop.id, i, cell_id),
                                                  event_port='spike')

        # Save to LEMS file
        print 'Writing LEMS file...'
        lems_file_name = ls.save_to_file()

    else:

        ls = None
        lems_file_name = ''

    return ls, lems_file_name