def handle_projection(self, id, prePop, postPop, synapse, hasWeights=False, hasDelays=False, type="projection", synapse_obj=None, pre_synapse_obj=None): if synapse_obj: self.nml_doc.append(synapse_obj) if pre_synapse_obj: self.nml_doc.append(pre_synapse_obj) proj = None if type == "projection": proj = neuroml.Projection(id=id, presynaptic_population=prePop, postsynaptic_population=postPop, synapse=synapse) self.network.projections.append(proj) elif type == "electricalProjection": proj = neuroml.ElectricalProjection( id=id, presynaptic_population=prePop, postsynaptic_population=postPop) self.network.electrical_projections.append(proj) self.projection_syns[id] = synapse elif type == "continuousProjection": proj = neuroml.ContinuousProjection( id=id, presynaptic_population=prePop, postsynaptic_population=postPop) self.network.continuous_projections.append(proj) if synapse_obj != None: self.projection_syns[id] = synapse_obj.id else: self.projection_syns[id] = synapse if pre_synapse_obj == None: pre_synapse_obj = neuroml.SilentSynapse(id="silentSyn_%s" % id) self.nml_doc.silent_synapses.append(pre_synapse_obj) self.projection_syns_pre[id] = pre_synapse_obj.id self.projections[id] = proj self.weightDelays[id] = hasWeights or hasDelays self.log.debug( "Projection: %s (%s) from %s to %s with syn: %s, weights: %s, delays: %s" % (id, type, prePop, postPop, synapse, hasWeights, hasDelays))
def generate_WB_network(cell_id, synapse_id, numCells_bc, connection_probability, I_mean, I_sigma, generate_LEMS_simulation, duration, x_size=100, y_size=100, z_size=100, network_id=ref + 'Network', color='0 0 1', connection=True, temperature='37 degC', validate=True, dt=0.01): nml_doc = neuroml.NeuroMLDocument(id=network_id) nml_doc.includes.append(neuroml.IncludeType(href='WangBuzsaki.cell.nml')) nml_doc.includes.append(neuroml.IncludeType(href='WangBuzsakiSynapse.xml')) # Create network net = neuroml.Network(id=network_id, type='networkWithTemperature', temperature=temperature) net.notes = 'Network generated using libNeuroML v%s' % __version__ nml_doc.networks.append(net) # Create population pop = neuroml.Population(id=ref + 'pop', component=cell_id, type='populationList', size=numCells_bc) if color is not None: pop.properties.append(neuroml.Property('color', color)) net.populations.append(pop) for i in range(0, numCells_bc): inst = neuroml.Instance(id=i) pop.instances.append(inst) inst.location = neuroml.Location(x=str(x_size * rnd.random()), y=str(y_size * rnd.random()), z=str(z_size * rnd.random())) # Add connections proj = neuroml.ContinuousProjection(id=ref + 'proj', presynaptic_population=pop.id, postsynaptic_population=pop.id) conn_count = 0 for i in range(0, numCells_bc): for j in range(0, numCells_bc): if i != j and rnd.random() < connection_probability: connection = neuroml.ContinuousConnectionInstance( id=conn_count, pre_cell='../%s/%i/%s' % (pop.id, i, cell_id), pre_component='silent', post_cell='../%s/%i/%s' % (pop.id, j, cell_id), post_component=synapse_id) proj.continuous_connection_instances.append(connection) conn_count += 1 net.continuous_projections.append(proj) # make cell pop inhomogenouos (different V_init-s with voltage-clamp) vc_dur = 2 # ms for i in range(0, numCells_bc): tmp = -75 + (rnd.random() * 15) vc = neuroml.VoltageClamp(id='VClamp%i' % i, delay='0ms', duration='%ims' % vc_dur, simple_series_resistance='1e6ohm', target_voltage='%imV' % tmp) nml_doc.voltage_clamps.append(vc) input_list = neuroml.InputList(id='input_%i' % i, component='VClamp%i' % i, populations=pop.id) input = neuroml.Input(id=i, target='../%s/%i/%s' % (pop.id, i, cell_id), destination='synapses') input_list.input.append(input) net.input_lists.append(input_list) # Add outer input (IClamp) tmp = rnd.normal(I_mean, I_sigma**2, numCells_bc) # random numbers from Gaussian distribution for i in range(0, numCells_bc): pg = neuroml.PulseGenerator(id='IClamp%i' % i, delay='%ims' % vc_dur, duration='%ims' % (duration - vc_dur), amplitude='%fpA' % (tmp[i])) nml_doc.pulse_generators.append(pg) input_list = neuroml.InputList(id='input%i' % i, component='IClamp%i' % i, populations=pop.id) input = neuroml.Input(id=i, target='../%s/%i/%s' % (pop.id, i, cell_id), destination='synapses') input_list.input.append(input) net.input_lists.append(input_list) # Write to file nml_file = '%s100Cells.net.nml' % ref print 'Writing network file to:', nml_file, '...' neuroml.writers.NeuroMLWriter.write(nml_doc, nml_file) if validate: # Validate the NeuroML from neuroml.utils import validate_neuroml2 validate_neuroml2(nml_file) if generate_LEMS_simulation: # Vreate a LEMSSimulation to manage creation of LEMS file ls = LEMSSimulation(sim_id='%sNetSim' % ref, duration=duration, dt=dt) # Point to network as target of simulation ls.assign_simulation_target(net.id) # Incude generated/existing NeuroML2 files ls.include_neuroml2_file('WangBuzsaki.cell.nml', include_included=False) ls.include_neuroml2_file('WangBuzsakiSynapse.xml', include_included=False) ls.include_neuroml2_file(nml_file, include_included=False) # Specify Display and output files disp_bc = 'display_bc' ls.create_display(disp_bc, 'Basket Cell Voltage trace', '-80', '40') of_bc = 'volts_file_bc' ls.create_output_file(of_bc, 'wangbuzsaki_network.dat') of_spikes_bc = 'spikes_bc' ls.create_event_output_file(of_spikes_bc, 'wangbuzsaki_network_spikes.dat') max_traces = 9 # the 10th color in NEURON is white ... for i in range(numCells_bc): quantity = '%s/%i/%s/v' % (pop.id, i, cell_id) if i < max_traces: ls.add_line_to_display(disp_bc, 'BC %i: Vm' % i, quantity, '1mV', pynml.get_next_hex_color()) ls.add_column_to_output_file(of_bc, 'v_%i' % i, quantity) ls.add_selection_to_event_output_file(of_spikes_bc, i, select='%s/%i/%s' % (pop.id, i, cell_id), event_port='spike') # Save to LEMS file print 'Writing LEMS file...' lems_file_name = ls.save_to_file() else: ls = None lems_file_name = '' return ls, lems_file_name