Esempio n. 1
0
def append_input_to_nml_input_list(stim, nml_doc, cell, params):
    target = get_cell_id_string(cell, params, muscle=is_muscle(cell))

    input_list = InputList(id="Input_%s_%s" % (cell, stim.id), component=stim.id, populations='%s' % cell)

    input_list.input.append(Input(id=0, target=target, destination="synapses"))

    nml_doc.networks[0].input_lists.append(input_list)
Esempio n. 2
0
def add_new_input(nml_doc, cell, delay, duration, amplitude, params):
    
    stim = PulseGenerator(id="stim_"+cell, delay=delay, duration=duration, amplitude=amplitude)
    
    nml_doc.pulse_generators.append(stim)
    
    
    target = get_cell_id_string(cell, params)
        
    input_list = InputList(id="Input_%s_%s"%(cell,stim.id),
                         component=stim.id,
                         populations='%s'%cell)

    input_list.input.append(Input(id=0, 
                  target=target, 
                  destination="synapses"))
                  
    nml_doc.networks[0].input_lists.append(input_list)
Esempio n. 3
0
def add_new_input(nml_doc, cell, delay, duration, amplitude, params):
    i = 1
    for stim in nml_doc.pulse_generators:
        if stim.id.startswith("%s_%s" % ("stim", cell)):
            i += 1
    id = "%s_%s_%s" % ("stim", cell, i)
    stim = PulseGenerator(id=id, delay=delay, duration=duration, amplitude=amplitude)
    nml_doc.pulse_generators.append(stim)

    target = get_cell_id_string(cell, params, muscle=is_muscle(cell))

    input_list = InputList(id="Input_%s_%s"%(cell,stim.id),
                           component=stim.id,
                           populations='%s'%cell)

    input_list.input.append(Input(id=0,
                                  target=target,
                                  destination="synapses"))

    nml_doc.networks[0].input_lists.append(input_list)
Esempio n. 4
0
def add_new_input(nml_doc, cell, delay, duration, amplitude, params):
    
    stim = PulseGenerator(id="stim_"+cell, delay=delay, duration=duration, amplitude=amplitude)
    
    nml_doc.pulse_generators.append(stim)
    
    populations_without_location = False # isinstance(params.elec_syn, GapJunction)
    
    target ="../%s/0/%s"%(cell, params.generic_cell.id)
    if populations_without_location:
        target ="%s[0]"%(cell)
        
    input_list = InputList(id="Input_%s_%s"%(cell,stim.id),
                         component=stim.id,
                         populations='%s'%cell)

    input_list.input.append(Input(id=0, 
                  target=target, 
                  destination="synapses"))
                  
    nml_doc.networks[0].input_lists.append(input_list)
def generate_example_network(network_id,
                             numCells_exc,
                             numCells_inh,
                             x_size = 1000,
                             y_size = 100, 
                             z_size = 1000,
                             exc_group_component = "SimpleIaF",
                             inh_group_component = "SimpleIaF_inh",
                             validate = True,
                             random_seed = 1234,
                             generate_lems_simulation = False,
                             connections = True,
                             connection_probability_exc_exc =   0.4,
                             connection_probability_inh_exc =   0.4,
                             connection_probability_exc_inh =   0.4,
                             connection_probability_inh_inh =   0.4,
                             inputs = False,
                             input_firing_rate = 50, # Hz
                             input_offset_min = 0, # nA
                             input_offset_max = 0, # nA
                             num_inputs_per_exc = 4,
                             duration = 500,  # ms
                             dt = 0.05,
                             temperature="32.0 degC"):

    seed(random_seed)

    nml_doc = NeuroMLDocument(id=network_id)

    net = Network(id = network_id, 
                  type = "networkWithTemperature",
                  temperature = temperature)
                  
    net.notes = "Network generated using libNeuroML v%s"%__version__
    nml_doc.networks.append(net)
    
    for cell_comp in set([exc_group_component, inh_group_component]): # removes duplicates
        nml_doc.includes.append(IncludeType(href='%s.cell.nml'%cell_comp))

    # The names of the Exc & Inh groups/populations 
    exc_group = "Exc" 
    inh_group = "Inh" 

    # The names of the network connections 
    net_conn_exc_inh = "NetConn_Exc_Inh"
    net_conn_inh_exc = "NetConn_Inh_Exc"
    net_conn_exc_exc = "NetConn_Exc_Exc"
    net_conn_inh_inh = "NetConn_Inh_Inh"

    # The names of the synapse types (should match names at Cell Mechanism/Network tabs in neuroConstruct)
    exc_inh_syn = "AMPAR"
    inh_exc_syn = "GABAA"
    exc_exc_syn = "AMPAR"
    inh_inh_syn = "GABAA"

    for syn in [exc_inh_syn, inh_exc_syn]:
        nml_doc.includes.append(IncludeType(href='%s.synapse.nml'%syn))


    # Generate excitatory cells 

    exc_pop = Population(id=exc_group, component=exc_group_component, type="populationList", size=numCells_exc)
    net.populations.append(exc_pop)

    for i in range(0, numCells_exc) :
            index = i
            inst = Instance(id=index)
            exc_pop.instances.append(inst)
            inst.location = Location(x=str(x_size*random()), y=str(y_size*random()), z=str(z_size*random()))

    # Generate inhibitory cells
    inh_pop = Population(id=inh_group, component=inh_group_component, type="populationList", size=numCells_inh)
    net.populations.append(inh_pop)

    for i in range(0, numCells_inh) :
            index = i
            inst = Instance(id=index)
            inh_pop.instances.append(inst)
            inst.location = Location(x=str(x_size*random()), y=str(y_size*random()), z=str(z_size*random()))

    if connections:

        proj_exc_exc = Projection(id=net_conn_exc_exc, presynaptic_population=exc_group, postsynaptic_population=exc_group, synapse=exc_exc_syn)
        net.projections.append(proj_exc_exc)
        
        proj_exc_inh = Projection(id=net_conn_exc_inh, presynaptic_population=exc_group, postsynaptic_population=inh_group, synapse=exc_inh_syn)
        net.projections.append(proj_exc_inh)
        
        proj_inh_exc = Projection(id=net_conn_inh_exc, presynaptic_population=inh_group, postsynaptic_population=exc_group, synapse=inh_exc_syn)
        net.projections.append(proj_inh_exc)
        
        proj_inh_inh = Projection(id=net_conn_inh_inh, presynaptic_population=inh_group, postsynaptic_population=inh_group, synapse=inh_inh_syn)
        net.projections.append(proj_inh_inh)

        count_exc_inh = 0
        count_inh_exc = 0
        count_exc_exc = 0
        count_inh_inh = 0


        for i in range(0, numCells_exc):
            for j in range(0, numCells_inh):
                if i != j:
                    if random()<connection_probability_exc_inh:
                        add_connection(proj_exc_inh, count_exc_inh, exc_group, exc_group_component, i, 0, inh_group, inh_group_component, j, 0)
                        count_exc_inh+=1
                        
                    if random()<connection_probability_inh_exc:

                        add_connection(proj_inh_exc, count_inh_exc, inh_group, inh_group_component, j, 0, exc_group, exc_group_component, i, 0)
                        count_inh_exc+=1
                        
        for i in range(0, numCells_exc):
            for j in range(0, numCells_exc):
                if i != j:
                        
                    if random()<connection_probability_exc_exc:

                        add_connection(proj_exc_exc, count_exc_exc, exc_group, exc_group_component, i, 0, exc_group, exc_group_component, j, 0)
                        count_exc_exc+=1
                    

        for i in range(0, numCells_inh):
            for j in range(0, numCells_inh):
                if i != j:

                    if random()<connection_probability_inh_inh:

                        add_connection(proj_inh_inh, count_inh_inh, inh_group, inh_group_component, j, 0, inh_group, inh_group_component, i, 0)
                        count_inh_inh+=1

    if inputs:
        
        
        if input_firing_rate>0:
            mf_input_syn = "AMPAR"
            if mf_input_syn!=exc_inh_syn and mf_input_syn!=inh_exc_syn:
                nml_doc.includes.append(IncludeType(href='%s.synapse.nml'%mf_input_syn))

            rand_spiker_id = "input_%sHz"%input_firing_rate
            
            pfs = PoissonFiringSynapse(id=rand_spiker_id,
                                       average_rate="%s per_s"%input_firing_rate,
                                       synapse=mf_input_syn,
                                       spike_target="./%s"%mf_input_syn)

            nml_doc.poisson_firing_synapses.append(pfs)

            input_list = InputList(id="Input_0",
                                 component=rand_spiker_id,
                                 populations=exc_group)

            count = 0
            for i in range(0, numCells_exc):

                for j in range(num_inputs_per_exc):
                    input = Input(id=count, 
                                  target="../%s/%i/%s"%(exc_group, i, exc_group_component), 
                                  destination="synapses")  
                    input_list.input.append(input)

                count += 1

            net.input_lists.append(input_list)
            
        if input_offset_max != 0 or input_offset_min != 0:
            

            for i in range(0, numCells_exc):

                pg = PulseGenerator(id="PulseGenerator_%i"%i,
                                    delay="0ms",
                                    duration="%sms"%duration,
                                    amplitude="%fnA"%(input_offset_min+(input_offset_max-input_offset_min)*random()))
                nml_doc.pulse_generators.append(pg)

                input_list = InputList(id="Input_Pulse_List_%i"%i,
                                     component=pg.id,
                                     populations=exc_group)

                input = Input(id=0, 
                              target="../%s/%i/%s"%(exc_group, i, exc_group_component), 
                              destination="synapses")  
                input_list.input.append(input)


                net.input_lists.append(input_list)


    #######   Write to file  ######    

    print("Saving to file...")
    nml_file = network_id+'.net.nml'
    writers.NeuroMLWriter.write(nml_doc, nml_file)

    print("Written network file to: "+nml_file)


    if validate:

        ###### Validate the NeuroML ######    

        from neuroml.utils import validate_neuroml2
        validate_neuroml2(nml_file) 
        
    if generate_lems_simulation:
        # Create a LEMSSimulation to manage creation of LEMS file
        
        ls = LEMSSimulation("Sim_%s"%network_id, duration, dt)

        # Point to network as target of simulation
        ls.assign_simulation_target(net.id)
        
        # Include generated/existing NeuroML2 files
        ls.include_neuroml2_file('%s.cell.nml'%exc_group_component)
        ls.include_neuroml2_file('%s.cell.nml'%inh_group_component)
        ls.include_neuroml2_file(nml_file)
        

        # Specify Displays and Output Files
        disp_exc = "display_exc"
        ls.create_display(disp_exc, "Voltages Exc cells", "-80", "50")

        of_exc = 'Volts_file_exc'
        ls.create_output_file(of_exc, "v_exc.dat")
        
        disp_inh = "display_inh"
        ls.create_display(disp_inh, "Voltages Inh cells", "-80", "50")

        of_inh = 'Volts_file_inh'
        ls.create_output_file(of_inh, "v_inh.dat")

        for i in range(numCells_exc):
            quantity = "%s/%i/%s/v"%(exc_group, i, exc_group_component)
            ls.add_line_to_display(disp_exc, "Exc %i: Vm"%i, quantity, "1mV", pynml.get_next_hex_color())
            ls.add_column_to_output_file(of_exc, "v_%i"%i, quantity)
            
        for i in range(numCells_inh):
            quantity = "%s/%i/%s/v"%(inh_group, i, inh_group_component)
            ls.add_line_to_display(disp_inh, "Inh %i: Vm"%i, quantity, "1mV", pynml.get_next_hex_color())
            ls.add_column_to_output_file(of_inh, "v_%i"%i, quantity)

        # Save to LEMS XML file
        lems_file_name = ls.save_to_file()
        
    print "-----------------------------------"
Esempio n. 6
0
def generate(net_id,
             params,
             cells=None,
             cells_to_plot=None,
             cells_to_stimulate=None,
             include_muscles=False,
             conn_number_override=None,
             conn_number_scaling=None,
             duration=500,
             dt=0.01,
             vmin=None,
             vmax=None,
             seed=1234,
             validate=True,
             test=False,
             verbose=True,
             target_directory='./'):

    root_dir = os.path.dirname(os.path.abspath(__file__))

    params.create_models()

    if vmin == None:
        if params.level == 'A':
            vmin = -72
        elif params.level == 'B':
            vmin = -52
        elif params.level == 'C':
            vmin = -60
        else:
            vmin = -52

    if vmax == None:
        if params.level == 'A':
            vmax = -48
        elif params.level == 'B':
            vmax = -28
        elif params.level == 'C':
            vmax = 25
        else:
            vmax = -28

    random.seed(seed)

    info = "\n\nParameters and setting used to generate this network:\n\n"+\
           "    Cells:                         %s\n" % (cells if cells is not None else "All cells")+\
           "    Cell stimulated:               %s\n" % (cells_to_stimulate if cells_to_stimulate is not None else "All cells")+\
           "    Connection numbers overridden: %s\n" % (conn_number_override if conn_number_override is not None else "None")+\
           "    Connection numbers scaled:     %s\n" % (conn_number_scaling if conn_number_scaling is not None else "None")+\
           "    Include muscles:               %s\n" % include_muscles
    print_(info)
    info += "\n%s\n" % (params.bioparameter_info("    "))

    nml_doc = NeuroMLDocument(id=net_id, notes=info)

    if params.level == "A" or params.level == "B" or params.level == "BC1":
        nml_doc.iaf_cells.append(params.generic_muscle_cell)
        nml_doc.iaf_cells.append(params.generic_neuron_cell)
    elif params.level == "C":
        nml_doc.cells.append(params.generic_muscle_cell)
        nml_doc.cells.append(params.generic_neuron_cell)

    net = Network(id=net_id)

    nml_doc.networks.append(net)

    nml_doc.pulse_generators.append(params.offset_current)

    if params.level == "C" or params.level == "C1":
        nml_doc.fixed_factor_concentration_models.append(
            params.concentration_model)

    cell_names, conns = get_cell_names_and_connection()

    # To hold all Cell NeuroML objects vs. names
    all_cells = {}

    # lems_file = ""
    lems_info = {
        "comment": info,
        "reference": net_id,
        "duration": duration,
        "dt": dt,
        "vmin": vmin,
        "vmax": vmax,
        "cell_component": params.generic_neuron_cell.id
    }

    lems_info["plots"] = []
    lems_info["activity_plots"] = []
    lems_info["muscle_plots"] = []
    lems_info["muscle_activity_plots"] = []

    lems_info["to_save"] = []
    lems_info["activity_to_save"] = []
    lems_info["muscles_to_save"] = []
    lems_info["muscles_activity_to_save"] = []
    lems_info["cells"] = []
    lems_info["muscles"] = []
    lems_info["includes"] = []

    if params.custom_component_types_definitions:
        lems_info["includes"].append(params.custom_component_types_definitions)
        if target_directory != './':
            def_file = "%s/%s" % (os.path.dirname(os.path.abspath(__file__)),
                                  params.custom_component_types_definitions)
            shutil.copy(def_file, target_directory)
        nml_doc.includes.append(
            IncludeType(href=params.custom_component_types_definitions))

    backers_dir = root_dir + "/../../../../OpenWormBackers/" if test else root_dir + "/../../../OpenWormBackers/"
    sys.path.append(backers_dir)
    import backers
    cells_vs_name = backers.get_adopted_cell_names(backers_dir)

    populations_without_location = False  # isinstance(params.elec_syn, GapJunction)

    count = 0
    for cell in cell_names:

        if cells is None or cell in cells:

            inst = Instance(id="0")

            if not populations_without_location:
                # build a Population data structure out of the cell name
                pop0 = Population(id=cell,
                                  component=params.generic_neuron_cell.id,
                                  type="populationList")
                pop0.instances.append(inst)

            else:
                # build a Population data structure out of the cell name
                pop0 = Population(id=cell,
                                  component=params.generic_neuron_cell.id,
                                  size="1")

            # put that Population into the Network data structure from above
            net.populations.append(pop0)

            if cells_vs_name.has_key(cell):
                p = Property(tag="OpenWormBackerAssignedName",
                             value=cells_vs_name[cell])
                pop0.properties.append(p)

            # also use the cell name to grab the morphology file, as a NeuroML data structure
            #  into the 'all_cells' dict
            cell_file_path = root_dir + "/../../../" if test else root_dir + "/../../"  #if running test
            cell_file = cell_file_path + 'generatedNeuroML2/%s.cell.nml' % cell
            doc = loaders.NeuroMLLoader.load(cell_file)
            all_cells[cell] = doc.cells[0]
            location = doc.cells[0].morphology.segments[0].proximal
            if verbose:
                print_(
                    "Loaded morphology: %s; id: %s; location: (%s, %s, %s)" %
                    (os.path.realpath(cell_file), all_cells[cell].id,
                     location.x, location.y, location.z))

            inst.location = Location(float(location.x), float(location.y),
                                     float(location.z))

            target = "../%s/0/%s" % (pop0.id, params.generic_neuron_cell.id)
            if populations_without_location:
                target = "../%s[0]" % (cell)

            if cells_to_stimulate is None or cell in cells_to_stimulate:
                input_list = InputList(id="Input_%s_%s" %
                                       (cell, params.offset_current.id),
                                       component=params.offset_current.id,
                                       populations='%s' % cell)

                input_list.input.append(
                    Input(id=0, target=target, destination="synapses"))

                net.input_lists.append(input_list)

            if cells_to_plot is None or cell in cells_to_plot:
                plot = {}

                plot["cell"] = cell
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/v" % (
                    cell, params.generic_neuron_cell.id)
                if populations_without_location:
                    plot["quantity"] = "%s[0]/v" % (cell)
                lems_info["plots"].append(plot)

                if params.generic_neuron_cell.__class__.__name__ == 'IafActivityCell':
                    plot = {}

                    plot["cell"] = cell
                    plot["colour"] = get_random_colour_hex()
                    plot["quantity"] = "%s/0/%s/activity" % (
                        cell, params.generic_neuron_cell.id)
                    if populations_without_location:
                        plot["quantity"] = "%s[0]/activity" % (cell)
                    lems_info["activity_plots"].append(plot)

                if params.generic_neuron_cell.__class__.__name__ == 'Cell':
                    plot = {}

                    plot["cell"] = cell
                    plot["colour"] = get_random_colour_hex()
                    plot["quantity"] = "%s/0/%s/caConc" % (
                        cell, params.generic_neuron_cell.id)
                    if populations_without_location:
                        plot["quantity"] = "%s[0]/caConc" % (cell)
                    lems_info["activity_plots"].append(plot)

            save = {}
            save["cell"] = cell
            save["quantity"] = "%s/0/%s/v" % (cell,
                                              params.generic_neuron_cell.id)
            if populations_without_location:
                save["quantity"] = "%s[0]/v" % (cell)
            lems_info["to_save"].append(save)

            if params.generic_neuron_cell.__class__.__name__ == 'IafActivityCell':
                save = {}
                save["cell"] = cell
                save["quantity"] = "%s/0/%s/activity" % (
                    cell, params.generic_neuron_cell.id)
                if populations_without_location:
                    save["quantity"] = "%s[0]/activity" % (cell)
                lems_info["activity_to_save"].append(save)
            if params.generic_neuron_cell.__class__.__name__ == 'Cell':
                save = {}
                save["cell"] = cell
                save["quantity"] = "%s/0/%s/caConc" % (
                    cell, params.generic_neuron_cell.id)
                if populations_without_location:
                    save["quantity"] = "%s[0]/caConc" % (cell)
                lems_info["activity_to_save"].append(save)

            lems_info["cells"].append(cell)

            count += 1

    if verbose:
        print_("Finished loading %i cells" % count)

    mneurons, all_muscles, muscle_conns = get_cell_muscle_names_and_connection(
    )

    muscles = get_muscle_names()

    if include_muscles:

        muscle_count = 0
        for muscle in muscles:

            inst = Instance(id="0")

            if not populations_without_location:
                # build a Population data structure out of the cell name
                pop0 = Population(id=muscle,
                                  component=params.generic_muscle_cell.id,
                                  type="populationList")
                pop0.instances.append(inst)

            else:
                # build a Population data structure out of the cell name
                pop0 = Population(id=muscle,
                                  component=params.generic_muscle_cell.id,
                                  size="1")

            # put that Population into the Network data structure from above
            net.populations.append(pop0)

            if cells_vs_name.has_key(muscle):
                # No muscles adopted yet, but just in case they are in future...
                p = Property(tag="OpenWormBackerAssignedName",
                             value=cells_vs_name[muscle])
                pop0.properties.append(p)

            x = 80 * (-1 if muscle[1] == 'V' else 1)
            z = 80 * (-1 if muscle[2] == 'L' else 1)
            y = -300 + 30 * int(muscle[3:5])
            print_('Positioning muscle: %s at (%s,%s,%s)' % (muscle, x, y, z))
            inst.location = Location(x, y, z)

            target = "%s/0/%s" % (pop0.id, params.generic_muscle_cell.id)
            if populations_without_location:
                target = "%s[0]" % (muscle)

            plot = {}

            plot["cell"] = muscle
            plot["colour"] = get_random_colour_hex()
            plot["quantity"] = "%s/0/%s/v" % (muscle,
                                              params.generic_muscle_cell.id)
            if populations_without_location:
                plot["quantity"] = "%s[0]/v" % (muscle)
            lems_info["muscle_plots"].append(plot)

            if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell':
                plot = {}

                plot["cell"] = muscle
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/activity" % (
                    muscle, params.generic_muscle_cell.id)
                if populations_without_location:
                    plot["quantity"] = "%s[0]/activity" % (muscle)
                lems_info["muscle_activity_plots"].append(plot)

            if params.generic_muscle_cell.__class__.__name__ == 'Cell':
                plot = {}

                plot["cell"] = muscle
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/caConc" % (
                    muscle, params.generic_muscle_cell.id)
                if populations_without_location:
                    plot["quantity"] = "%s[0]/caConc" % (muscle)
                lems_info["muscle_activity_plots"].append(plot)

            save = {}
            save["cell"] = muscle
            save["quantity"] = "%s/0/%s/v" % (muscle,
                                              params.generic_muscle_cell.id)
            if populations_without_location:
                save["quantity"] = "%s[0]/v" % (muscle)
            lems_info["muscles_to_save"].append(save)

            if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell':
                save = {}
                save["cell"] = muscle
                save["quantity"] = "%s/0/%s/activity" % (
                    muscle, params.generic_muscle_cell.id)
                if populations_without_location:
                    save["quantity"] = "%s[0]/activity" % (muscle)
                lems_info["muscles_activity_to_save"].append(save)
            if params.generic_muscle_cell.__class__.__name__ == 'Cell':
                save = {}
                save["cell"] = muscle
                save["quantity"] = "%s/0/%s/caConc" % (
                    muscle, params.generic_muscle_cell.id)
                if populations_without_location:
                    save["quantity"] = "%s[0]/caConc" % (muscle)
                lems_info["muscles_activity_to_save"].append(save)

            lems_info["muscles"].append(muscle)

            muscle_count += 1

        if verbose:
            print_("Finished creating %i muscles" % muscle_count)

    existing_synapses = {}

    for conn in conns:

        if conn.pre_cell in lems_info["cells"] and conn.post_cell in lems_info[
                "cells"]:
            # take information about each connection and package it into a
            # NeuroML Projection data structure
            proj_id = get_projection_id(conn.pre_cell, conn.post_cell,
                                        conn.synclass, conn.syntype)

            elect_conn = False
            analog_conn = False
            syn0 = params.neuron_to_neuron_exc_syn
            if 'GABA' in conn.synclass:
                syn0 = params.neuron_to_neuron_inh_syn
            if '_GJ' in conn.synclass:
                syn0 = params.neuron_to_neuron_elec_syn
                elect_conn = isinstance(params.neuron_to_neuron_elec_syn,
                                        GapJunction)

            if isinstance(syn0, GradedSynapse):
                analog_conn = True
                if len(nml_doc.silent_synapses) == 0:
                    silent = SilentSynapse(id="silent")
                    nml_doc.silent_synapses.append(silent)

            number_syns = conn.number
            conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell)

            if conn_number_override is not None and (
                    conn_number_override.has_key(conn_shorthand)):
                number_syns = conn_number_override[conn_shorthand]
            elif conn_number_scaling is not None and (
                    conn_number_scaling.has_key(conn_shorthand)):
                number_syns = conn.number * conn_number_scaling[conn_shorthand]
            '''
            else:
                print conn_shorthand
                print conn_number_override
                print conn_number_scaling'''

            if number_syns != conn.number:
                magnitude, unit = bioparameters.split_neuroml_quantity(
                    syn0.gbase)
                cond0 = "%s%s" % (magnitude * conn.number, unit)
                cond1 = "%s%s" % (magnitude * number_syns, unit)
                if verbose:
                    print_(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \
                     (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1))

            syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc,
                                                  existing_synapses)

            if elect_conn:

                if populations_without_location:
                    proj0 = ElectricalProjection(id=proj_id, \
                                       presynaptic_population=conn.pre_cell,
                                       postsynaptic_population=conn.post_cell)

                    net.electrical_projections.append(proj0)

                    # Add a Connection with the closest locations
                    conn0 = ElectricalConnection(id="0", \
                               pre_cell="0",
                               post_cell="0",
                               synapse=syn_new.id)

                    proj0.electrical_connections.append(conn0)
                else:
                    proj0 = ElectricalProjection(id=proj_id, \
                                       presynaptic_population=conn.pre_cell,
                                       postsynaptic_population=conn.post_cell)

                    net.electrical_projections.append(proj0)

                    pre_cell_id = "../%s/0/%s" % (
                        conn.pre_cell, params.generic_neuron_cell.id)
                    post_cell_id = "../%s/0/%s" % (
                        conn.post_cell, params.generic_neuron_cell.id)

                    #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id))

                    # Add a Connection with the closest locations
                    conn0 = ElectricalConnectionInstance(id="0", \
                               pre_cell=pre_cell_id,
                               post_cell=post_cell_id,
                               synapse=syn_new.id)

                    proj0.electrical_connection_instances.append(conn0)

            elif analog_conn:

                proj0 = ContinuousProjection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell)

                net.continuous_projections.append(proj0)

                pre_cell_id = "../%s/0/%s" % (conn.pre_cell,
                                              params.generic_neuron_cell.id)
                post_cell_id = "../%s/0/%s" % (conn.post_cell,
                                               params.generic_neuron_cell.id)

                conn0 = ContinuousConnectionInstance(id="0", \
                           pre_cell=pre_cell_id,
                           post_cell=post_cell_id,
                           pre_component="silent",
                           post_component=syn_new.id)

                proj0.continuous_connection_instances.append(conn0)

            else:

                if not populations_without_location:
                    proj0 = Projection(id=proj_id, \
                                       presynaptic_population=conn.pre_cell,
                                       postsynaptic_population=conn.post_cell,
                                       synapse=syn_new.id)

                    net.projections.append(proj0)

                    pre_cell_id = "../%s/0/%s" % (
                        conn.pre_cell, params.generic_neuron_cell.id)
                    post_cell_id = "../%s/0/%s" % (
                        conn.post_cell, params.generic_neuron_cell.id)

                    conn0 = ConnectionWD(id="0", \
                               pre_cell_id=pre_cell_id,
                               post_cell_id=post_cell_id,
                               weight = number_syns,
                               delay = '0ms')

                    proj0.connection_wds.append(conn0)

                if populations_without_location:
                    raise NotImplementedError
                    '''
                    #         <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/>
                    pre_cell_id="%s[0]"%(conn.pre_cell)
                    post_cell_id="%s[0]"%(conn.post_cell)

                    conn0 = SynapticConnection(from_=pre_cell_id,
                               to=post_cell_id,
                               synapse=syn_new.id,
                               destination="synapses")

                    net.synaptic_connections.append(conn0)'''

    if include_muscles:
        for conn in muscle_conns:

            if conn.pre_cell in lems_info[
                    "cells"] and conn.post_cell in muscles:
                # take information about each connection and package it into a
                # NeuroML Projection data structure
                proj_id = get_projection_id(conn.pre_cell, conn.post_cell,
                                            conn.synclass, conn.syntype)

                elect_conn = False
                analog_conn = False
                syn0 = params.neuron_to_muscle_exc_syn
                if 'GABA' in conn.synclass:
                    syn0 = params.neuron_to_muscle_inh_syn
                if '_GJ' in conn.synclass:
                    syn0 = params.neuron_to_muscle_elec_syn
                    elect_conn = isinstance(params.neuron_to_muscle_elec_syn,
                                            GapJunction)

                if isinstance(syn0, GradedSynapse):
                    analog_conn = True
                    if len(nml_doc.silent_synapses) == 0:
                        silent = SilentSynapse(id="silent")
                        nml_doc.silent_synapses.append(silent)

                number_syns = conn.number
                conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell)

                if conn_number_override is not None and (
                        conn_number_override.has_key(conn_shorthand)):
                    number_syns = conn_number_override[conn_shorthand]
                elif conn_number_scaling is not None and (
                        conn_number_scaling.has_key(conn_shorthand)):
                    number_syns = conn.number * conn_number_scaling[
                        conn_shorthand]
                '''
            else:
                print conn_shorthand
                print conn_number_override
                print conn_number_scaling'''

                if number_syns != conn.number:
                    magnitude, unit = bioparameters.split_neuroml_quantity(
                        syn0.gbase)
                    cond0 = "%s%s" % (magnitude * conn.number, unit)
                    cond1 = "%s%s" % (magnitude * number_syns, unit)
                    if verbose:
                        print_(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \
                         (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1))

                syn_new = create_n_connection_synapse(syn0, number_syns,
                                                      nml_doc,
                                                      existing_synapses)

                if elect_conn:

                    if populations_without_location:
                        proj0 = ElectricalProjection(id=proj_id, \
                                           presynaptic_population=conn.pre_cell,
                                           postsynaptic_population=conn.post_cell)

                        net.electrical_projections.append(proj0)

                        # Add a Connection with the closest locations
                        conn0 = ElectricalConnection(id="0", \
                                   pre_cell="0",
                                   post_cell="0",
                                   synapse=syn_new.id)

                        proj0.electrical_connections.append(conn0)
                    else:
                        proj0 = ElectricalProjection(id=proj_id, \
                                           presynaptic_population=conn.pre_cell,
                                           postsynaptic_population=conn.post_cell)

                        net.electrical_projections.append(proj0)

                        pre_cell_id = "../%s/0/%s" % (
                            conn.pre_cell, params.generic_neuron_cell.id)
                        post_cell_id = "../%s/0/%s" % (
                            conn.post_cell, params.generic_muscle_cell.id)

                        #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id))

                        # Add a Connection with the closest locations
                        conn0 = ElectricalConnectionInstance(id="0", \
                                   pre_cell=pre_cell_id,
                                   post_cell=post_cell_id,
                                   synapse=syn_new.id)

                        proj0.electrical_connection_instances.append(conn0)

                elif analog_conn:

                    proj0 = ContinuousProjection(id=proj_id, \
                                       presynaptic_population=conn.pre_cell,
                                       postsynaptic_population=conn.post_cell)

                    net.continuous_projections.append(proj0)

                    pre_cell_id = "../%s/0/%s" % (
                        conn.pre_cell, params.generic_neuron_cell.id)
                    post_cell_id = "../%s/0/%s" % (
                        conn.post_cell, params.generic_muscle_cell.id)

                    conn0 = ContinuousConnectionInstance(id="0", \
                               pre_cell=pre_cell_id,
                               post_cell=post_cell_id,
                               pre_component="silent",
                               post_component=syn_new.id)

                    proj0.continuous_connection_instances.append(conn0)

                else:

                    if not populations_without_location:
                        proj0 = Projection(id=proj_id, \
                                           presynaptic_population=conn.pre_cell,
                                           postsynaptic_population=conn.post_cell,
                                           synapse=syn_new.id)

                        net.projections.append(proj0)

                        # Add a Connection with the closest locations

                        pre_cell_id = "../%s/0/%s" % (
                            conn.pre_cell, params.generic_neuron_cell.id)
                        post_cell_id = "../%s/0/%s" % (
                            conn.post_cell, params.generic_muscle_cell.id)

                        conn0 = Connection(id="0", \
                                   pre_cell_id=pre_cell_id,
                                   post_cell_id=post_cell_id)

                        proj0.connections.append(conn0)

                    if populations_without_location:
                        #         <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/>
                        pre_cell_id = "%s[0]" % (conn.pre_cell)
                        post_cell_id = "%s[0]" % (conn.post_cell)

                        conn0 = SynapticConnection(from_=pre_cell_id,
                                                   to=post_cell_id,
                                                   synapse=syn_new.id,
                                                   destination="synapses")

                        net.synaptic_connections.append(conn0)

    # import pprint
    # pprint.pprint(lems_info)
    template_path = root_dir + '/../' if test else root_dir + '/'  # if running test
    write_to_file(nml_doc,
                  lems_info,
                  net_id,
                  template_path,
                  validate=validate,
                  verbose=verbose,
                  target_directory=target_directory)

    return nml_doc
Esempio n. 7
0
                                    pre_cell="../%s/%i/%s"%(from_pop,pre_index,IafCell0.id), \
                                    pre_segment=pre_seg_id, \
                                    pre_fraction_along=random.random(),
                                    post_cell="../%s/%i/%s"%(to_pop,post_index,IafCell0.id), \
                                    post_segment=post_seg_id,
                                    post_fraction_along=random.random(),
                                    synapse=gj.id,
                                    weight=random.random())

            electricalProjectionW.electrical_connection_instance_ws.append(
                electricalConnectionW)

            proj_count += 1

    input = Input(id=pre_index,
                  target="../%s/%i/%s" % (from_pop, pre_index, pop.component),
                  destination="synapses")
    input_list.input.append(input)

    input_w = InputW(id=pre_index,
                     target="../%s/%i/%s" %
                     (from_pop, pre_index, pop.component),
                     destination="synapses",
                     weight=10)

    input_list_w.input_ws.append(input_w)

proj_count = 0

from_pop = pop0.id
to_pop = pop1.id
Esempio n. 8
0
    def createModel(self):

        # File names of all components
        pyr_file_name = "../ACnet2_NML2/Cells/pyr_4_sym.cell.nml"
        bask_file_name = "../ACnet2_NML2/Cells/bask.cell.nml"

        exc_exc_syn_names = '../ACnet2_NML2/Synapses/AMPA_syn.synapse.nml'
        exc_inh_syn_names = '../ACnet2_NML2/Synapses/AMPA_syn_inh.synapse.nml'
        inh_exc_syn_names = '../ACnet2_NML2/Synapses/GABA_syn.synapse.nml'
        inh_inh_syn_names = '../ACnet2_NML2/Synapses/GABA_syn_inh.synapse.nml'
        bg_exc_syn_names = '../ACnet2_NML2/Synapses/bg_AMPA_syn.synapse.nml'

        nml_doc = NeuroMLDocument(id=self.filename + '_doc')
        net = Network(id=self.filename + '_net')
        nml_doc.networks.append(net)

        nml_doc.includes.append(IncludeType(pyr_file_name))
        nml_doc.includes.append(IncludeType(bask_file_name))
        nml_doc.includes.append(IncludeType(exc_exc_syn_names))
        nml_doc.includes.append(IncludeType(exc_inh_syn_names))
        nml_doc.includes.append(IncludeType(inh_exc_syn_names))
        nml_doc.includes.append(IncludeType(inh_inh_syn_names))
        nml_doc.includes.append(IncludeType(bg_exc_syn_names))

        # Create a LEMSSimulation to manage creation of LEMS file
        ls = LEMSSimulation(self.filename, self.sim_time, self.dt)

        # Point to network as target of simulation
        ls.assign_simulation_target(net.id)

        # The names of the cell type/component used in the Exc & Inh populations
        exc_group_component = "pyr_4_sym"
        inh_group_component = "bask"

        # The names of the Exc & Inh groups/populations
        exc_group = "pyramidals"  #"pyramidals48x48"
        inh_group = "baskets"  #"baskets24x24"

        # The names of the network connections
        net_conn_exc_exc = "pyr_pyr"
        net_conn_exc_inh = "pyr_bask"
        net_conn_inh_exc = "bask_pyr"
        net_conn_inh_inh = "bask_bask"

        # The names of the synapse types
        exc_exc_syn = "AMPA_syn"
        exc_exc_syn_seg_id = 3  # Middle apical dendrite
        exc_inh_syn = "AMPA_syn_inh"
        exc_inh_syn_seg_id = 1  # Dendrite
        inh_exc_syn = "GABA_syn"
        inh_exc_syn_seg_id = 6  # Basal dendrite
        inh_inh_syn = "GABA_syn_inh"
        inh_inh_syn_seg_id = 0  # Soma

        aff_exc_syn = "AMPA_aff_syn"
        aff_exc_syn_seg_id = 5  # proximal apical dendrite

        bg_exc_syn = "bg_AMPA_syn"
        bg_exc_syn_seg_id = 7  # Basal dendrite

        # Excitatory Parameters
        XSCALE_ex = 24  #48
        ZSCALE_ex = 24  #48
        xSpacing_ex = 40  # 10^-6m
        zSpacing_ex = 40  # 10^-6m

        # Inhibitory Parameters
        XSCALE_inh = 12  #24
        ZSCALE_inh = 12  #24
        xSpacing_inh = 80  # 10^-6m
        zSpacing_inh = 80  # 10^-6m

        numCells_ex = XSCALE_ex * ZSCALE_ex
        numCells_inh = XSCALE_inh * ZSCALE_inh

        # Connection probabilities (initial value)
        connection_probability_ex_ex = 0.15
        connection_probability_ex_inh = 0.45
        connection_probability_inh_ex = 0.6
        connection_probability_inh_inh = 0.6

        # Generate excitatory cells

        exc_pop = Population(id=exc_group,
                             component=exc_group_component,
                             type="populationList",
                             size=XSCALE_ex * ZSCALE_ex)
        net.populations.append(exc_pop)

        exc_pos = np.zeros((XSCALE_ex * ZSCALE_ex, 2))

        for i in range(0, XSCALE_ex):
            for j in range(0, ZSCALE_ex):
                # create cells
                x = i * xSpacing_ex
                z = j * zSpacing_ex
                index = i * ZSCALE_ex + j

                inst = Instance(id=index)
                exc_pop.instances.append(inst)

                inst.location = Location(x=x, y=0, z=z)

                exc_pos[index, 0] = x
                exc_pos[index, 1] = z

        # Generate inhibitory cells

        inh_pop = Population(id=inh_group,
                             component=inh_group_component,
                             type="populationList",
                             size=XSCALE_inh * ZSCALE_inh)
        net.populations.append(inh_pop)

        inh_pos = np.zeros((XSCALE_inh * ZSCALE_inh, 2))

        for i in range(0, XSCALE_inh):
            for j in range(0, ZSCALE_inh):
                # create cells
                x = i * xSpacing_inh
                z = j * zSpacing_inh
                index = i * ZSCALE_inh + j

                inst = Instance(id=index)
                inh_pop.instances.append(inst)

                inst.location = Location(x=x, y=0, z=z)

                inh_pos[index, 0] = x
                inh_pos[index, 1] = z

        proj_exc_exc = Projection(id=net_conn_exc_exc,
                                  presynaptic_population=exc_group,
                                  postsynaptic_population=exc_group,
                                  synapse=exc_exc_syn)
        net.projections.append(proj_exc_exc)
        proj_exc_inh = Projection(id=net_conn_exc_inh,
                                  presynaptic_population=exc_group,
                                  postsynaptic_population=inh_group,
                                  synapse=exc_inh_syn)
        net.projections.append(proj_exc_inh)
        proj_inh_exc = Projection(id=net_conn_inh_exc,
                                  presynaptic_population=inh_group,
                                  postsynaptic_population=exc_group,
                                  synapse=inh_exc_syn)
        net.projections.append(proj_inh_exc)
        proj_inh_inh = Projection(id=net_conn_inh_inh,
                                  presynaptic_population=inh_group,
                                  postsynaptic_population=inh_group,
                                  synapse=inh_inh_syn)
        net.projections.append(proj_inh_inh)

        # Generate exc -> *  connections

        exc_exc_conn = np.zeros((numCells_ex, numCells_ex))
        exc_inh_conn = np.zeros((numCells_ex, numCells_inh))

        count_exc_exc = 0
        count_exc_inh = 0
        for i in range(0, XSCALE_ex):
            for j in range(0, ZSCALE_ex):
                x = i * xSpacing_ex
                y = j * zSpacing_ex
                index = i * ZSCALE_ex + j
                #print("Looking at connections for exc cell at (%i, %i)"%(i,j))

                # exc -> exc  connections
                conn_type = net_conn_exc_exc
                for k in range(0, XSCALE_ex):
                    for l in range(0, ZSCALE_ex):

                        # calculate distance from pre- to post-synaptic neuron
                        xk = k * xSpacing_ex
                        yk = l * zSpacing_ex
                        distance = math.sqrt((x - xk)**2 + (y - yk)**2)
                        connection_probability = connection_probability_ex_ex * math.exp(
                            -(distance / (10.0 * xSpacing_ex))**2)

                        # create a random number between 0 and 1, if it is <= connection_probability
                        # accept connection otherwise refuse
                        a = random.random()
                        if 0 < a <= connection_probability:
                            index2 = k * ZSCALE_ex + l
                            count_exc_exc += 1

                            add_connection(proj_exc_exc, count_exc_exc,
                                           exc_group, exc_group_component,
                                           index, 0, exc_group,
                                           exc_group_component, index2,
                                           exc_exc_syn_seg_id)

                            exc_exc_conn[index, index2] = 1

                # exc -> inh  connections
                conn_type = net_conn_exc_inh
                for k in range(0, XSCALE_inh):
                    for l in range(0, ZSCALE_inh):

                        # calculate distance from pre- to post-synaptic neuron
                        xk = k * xSpacing_inh
                        yk = l * zSpacing_inh
                        distance = math.sqrt((x - xk)**2 + (y - yk)**2)
                        connection_probability = connection_probability_ex_inh * math.exp(
                            -(distance / (10.0 * xSpacing_ex))**2)

                        # create a random number between 0 and 1, if it is <= connection_probability
                        # accept connection otherwise refuse
                        a = random.random()
                        if 0 < a <= connection_probability:
                            index2 = k * ZSCALE_inh + l
                            count_exc_inh += 1

                            add_connection(proj_exc_inh, count_exc_inh,
                                           exc_group, exc_group_component,
                                           index, 0, inh_group,
                                           inh_group_component, index2,
                                           exc_inh_syn_seg_id)

                            exc_inh_conn[index, index2] = 1

        inh_exc_conn = np.zeros((numCells_inh, numCells_ex))
        inh_inh_conn = np.zeros((numCells_inh, numCells_inh))

        count_inh_exc = 0
        count_inh_inh = 0
        for i in range(0, XSCALE_inh):
            for j in range(0, ZSCALE_inh):

                x = i * xSpacing_inh
                y = j * zSpacing_inh
                index = i * ZSCALE_inh + j
                #print("Looking at connections for inh cell at (%i, %i)"%(i,j))

                # inh -> exc  connections
                conn_type = net_conn_inh_exc
                for k in range(0, XSCALE_ex):
                    for l in range(0, ZSCALE_ex):

                        # calculate distance from pre- to post-synaptic neuron
                        xk = k * xSpacing_ex
                        yk = l * zSpacing_ex
                        distance = math.sqrt((x - xk)**2 + (y - yk)**2)
                        connection_probability = connection_probability_inh_ex * math.exp(
                            -(distance / (10.0 * xSpacing_ex))**2)

                        # create a random number between 0 and 1, if it is <= connection_probability
                        # accept connection otherwise refuse
                        a = random.random()
                        if 0 < a <= connection_probability:
                            index2 = k * ZSCALE_ex + l
                            count_inh_exc += 1

                            add_connection(proj_inh_exc, count_inh_exc,
                                           inh_group, inh_group_component,
                                           index, 0, exc_group,
                                           exc_group_component, index2,
                                           inh_exc_syn_seg_id)

                            inh_exc_conn[index, index2] = 1

                # inh -> inh  connections
                conn_type = net_conn_inh_inh
                for k in range(0, XSCALE_inh):
                    for l in range(0, ZSCALE_inh):

                        # calculate distance from pre- to post-synaptic neuron
                        xk = k * xSpacing_inh
                        yk = l * zSpacing_inh
                        distance = math.sqrt((x - xk)**2 + (y - yk)**2)
                        connection_probability = connection_probability_inh_inh * math.exp(
                            -(distance / (10.0 * xSpacing_ex))**2)

                        # create a random number between 0 and 1, if it is <= connection_probability
                        # accept connection otherwise refuse
                        a = random.random()
                        if 0 < a <= connection_probability:
                            index2 = k * ZSCALE_inh + l
                            count_inh_inh += 1

                            add_connection(proj_inh_inh, count_inh_inh,
                                           inh_group, inh_group_component,
                                           index, 0, inh_group,
                                           inh_group_component, index2,
                                           inh_inh_syn_seg_id)

                            inh_inh_conn[index, index2] = 1

        print(
            "Generated network with %i exc_exc, %i exc_inh, %i inh_exc, %i inh_inh connections"
            % (count_exc_exc, count_exc_inh, count_inh_exc, count_inh_inh))

        #######   Create Input   ######
        # Create a sine generator
        sgE = SineGenerator(id="sineGen_0",
                            phase="0",
                            delay="0ms",
                            duration=str(self.sim_time) + "ms",
                            amplitude=str(self.Edrive_weight) + "nA",
                            period=str(self.Drive_period) + "ms")
        sgI = SineGenerator(id="sineGen_1",
                            phase="0",
                            delay="0ms",
                            duration=str(self.sim_time) + "ms",
                            amplitude=str(self.Idrive_weight) + "nA",
                            period=str(self.Drive_period) + "ms")

        nml_doc.sine_generators.append(sgE)
        nml_doc.sine_generators.append(sgI)
        # Create an input object for each excitatory cell
        for i in range(0, XSCALE_ex):
            exp_input = ExplicitInput(target="%s[%i]" % (exc_pop.id, i),
                                      input=sgE.id)
            net.explicit_inputs.append(exp_input)

        # Create an input object for a percentage of inhibitory cells
        input_probability = 0.65
        for i in range(0, XSCALE_inh):
            ran = random.random()
            if 0 < ran <= input_probability:
                inh_input = ExplicitInput(target="%s[%i]" % (inh_pop.id, i),
                                          input=sgI.id)
                net.explicit_inputs.append(inh_input)

        # Define Poisson noise input

        # Ex

        #nml_doc.includes.append(IncludeType('Synapses/bg_AMPA_syn.synapse.nml'))

        pfs1 = PoissonFiringSynapse(id="poissonFiringSyn1",
                                    average_rate=str(self.bg_noise_frequency) +
                                    "Hz",
                                    synapse=bg_exc_syn,
                                    spike_target="./%s" % bg_exc_syn)
        nml_doc.poisson_firing_synapses.append(pfs1)

        pfs_input_list1 = InputList(id="pfsInput1",
                                    component=pfs1.id,
                                    populations=exc_pop.id)
        net.input_lists.append(pfs_input_list1)
        for i in range(0, numCells_ex):
            pfs_input_list1.input.append(
                Input(id=i,
                      target='../%s/%i/%s' %
                      (exc_pop.id, i, exc_group_component),
                      segment_id=bg_exc_syn_seg_id,
                      destination="synapses"))

        #######   Write to file  ######

        print("Saving to file...")
        nml_file = '../ACnet2_NML2/' + self.filename + '_doc' + '.net.nml'
        writers.NeuroMLWriter.write(nml_doc, nml_file)

        print("Written network file to: " + nml_file)

        ###### Validate the NeuroML ######

        from neuroml.utils import validate_neuroml2
        validate_neuroml2(nml_file)
        print "-----------------------------------"

        ###### Output #######

        # Output membrane potential
        # Ex population
        Ex_potentials = 'V_Ex'
        ls.create_output_file(Ex_potentials,
                              "../ACnet2_NML2/Results/v_exc.dat")
        for j in range(numCells_ex):
            quantity = "%s[%i]/v" % (exc_pop.id, j)
            v = 'v' + str(j)
            ls.add_column_to_output_file(Ex_potentials, v, quantity)

        # Inh population
        #Inh_potentials = 'V_Inh'
        #ls.create_output_file(Inh_potentials, "../ACnet2_NML2/Results/v_inh.dat")
        #for j in range(numCells_inh):
        #	quantity = "%s[%i]/v"%(inh_pop.id, j)
        #	v = 'v'+str(j)
        #	ls.add_column_to_output_file(Inh_potentials,v, quantity)

        # include generated network
        ls.include_neuroml2_file(nml_file)

        # Save to LEMS XML file
        lems_file_name = ls.save_to_file(file_name='../ACnet2_NML2/LEMS_' +
                                         self.filename + '.xml')
Esempio n. 9
0
def generate(net_id,
             params,
             data_reader = "SpreadsheetDataReader",
             cells = None,
             cells_to_plot = None,
             cells_to_stimulate = None,
             muscles_to_include=[],
             conns_to_include=[],
             conn_number_override = None,
             conn_number_scaling = None,
             conn_polarity_override = None,
             duration = 500,
             dt = 0.01,
             vmin = None,
             vmax = None,
             seed = 1234,
             test=False,
             verbose=True,
             param_overrides={},
             target_directory='./'):
                 
    validate = not (params.is_level_B() or params.is_level_C0())
                
    root_dir = os.path.dirname(os.path.abspath(__file__))
    for k in param_overrides.keys():
        v = param_overrides[k]
        print_("Setting parameter %s = %s"%(k,v))
        params.set_bioparameter(k, v, "Set with param_overrides", 0)
    

    params.create_models()
    
    if vmin==None:
        if params.is_level_A():
            vmin=-72
        elif params.is_level_B():
            vmin=-52 
        elif params.is_level_C():
            vmin=-60
        elif params.is_level_D():
            vmin=-60
        else:
            vmin=-52 
            
    
    if vmax==None:
        if params.is_level_A():
            vmax=-48
        elif params.is_level_B():
            vmax=-28
        elif params.is_level_C():
            vmax=25
        elif params.is_level_D():
            vmax=25
        else:
            vmax=-28
    
    random.seed(seed)

    info = "\n\nParameters and setting used to generate this network:\n\n"+\
           "    Data reader:                    %s\n" % data_reader+\
           "    Cells:                          %s\n" % (cells if cells is not None else "All cells")+\
           "    Cell stimulated:                %s\n" % (cells_to_stimulate if cells_to_stimulate is not None else "All neurons")+\
           "    Connection:                     %s\n" % (conns_to_include if conns_to_include is not None else "All connections") + \
           "    Connection numbers overridden:  %s\n" % (conn_number_override if conn_number_override is not None else "None")+\
           "    Connection numbers scaled:      %s\n" % (conn_number_scaling if conn_number_scaling is not None else "None")+ \
           "    Connection polarities override: %s\n" % conn_polarity_override + \
           "    Muscles:                        %s\n" % (muscles_to_include if muscles_to_include is not None else "All muscles")
    if verbose: print_(info)
    info += "\n%s\n"%(params.bioparameter_info("    "))

    nml_doc = NeuroMLDocument(id=net_id, notes=info)

    if params.is_level_A() or params.is_level_B() or params.level == "BC1":
        nml_doc.iaf_cells.append(params.generic_muscle_cell) 
        nml_doc.iaf_cells.append(params.generic_neuron_cell) 
    elif params.is_level_C():
        nml_doc.cells.append(params.generic_muscle_cell)
        nml_doc.cells.append(params.generic_neuron_cell)
    elif params.is_level_D():
        nml_doc.cells.append(params.generic_muscle_cell)
         

    net = Network(id=net_id)


    nml_doc.networks.append(net)

    nml_doc.pulse_generators.append(params.offset_current)

    if is_cond_based_cell(params):
        nml_doc.fixed_factor_concentration_models.append(params.concentration_model)

    cell_names, conns = get_cell_names_and_connection(data_reader)

    # To hold all Cell NeuroML objects vs. names
    all_cells = {}

    # lems_file = ""
    lems_info = {"comment":    info,
                 "reference":  net_id,
                 "duration":   duration,
                 "dt":         dt,
                 "vmin":       vmin,
                 "vmax":       vmax}

    lems_info["plots"] = []
    lems_info["activity_plots"] = []
    lems_info["muscle_plots"] = []
    lems_info["muscle_activity_plots"] = []

    lems_info["to_save"] = []
    lems_info["activity_to_save"] = []
    lems_info["muscles_to_save"] = []
    lems_info["muscles_activity_to_save"] = []
    lems_info["cells"] = []
    lems_info["muscles"] = []
    lems_info["includes"] = []

    if params.custom_component_types_definitions:
        if isinstance(params.custom_component_types_definitions, str):
            params.custom_component_types_definitions = [params.custom_component_types_definitions]
        for ctd in params.custom_component_types_definitions:
            lems_info["includes"].append(ctd)
            if target_directory != './':
                def_file = "%s/%s"%(os.path.dirname(os.path.abspath(__file__)), ctd)
                shutil.copy(def_file, target_directory)
            nml_doc.includes.append(IncludeType(href=ctd))
    
    
    backers_dir = root_dir+"/../../../../OpenWormBackers/" if test else root_dir+"/../../../OpenWormBackers/"
    sys.path.append(backers_dir)
    import backers
    cells_vs_name = backers.get_adopted_cell_names(backers_dir)


    count = 0
    for cell in cell_names:

        if cells is None or cell in cells:

            inst = Instance(id="0")

            if not params.is_level_D():
                # build a Population data structure out of the cell name
                pop0 = Population(id=cell,
                                  component=params.generic_neuron_cell.id,
                                  type="populationList")
                cell_id = params.generic_neuron_cell.id
            else:
                # build a Population data structure out of the cell name
                pop0 = Population(id=cell,
                                  component=cell,
                                  type="populationList")
                cell_id = cell
                                  
            pop0.instances.append(inst)



            # put that Population into the Network data structure from above
            net.populations.append(pop0)
            
            if cells_vs_name.has_key(cell):
                p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[cell])
                pop0.properties.append(p)

            # also use the cell name to grab the morphology file, as a NeuroML data structure
            #  into the 'all_cells' dict
            cell_file_path = root_dir+"/../../../" if test else root_dir+"/../../" #if running test
            cell_file = cell_file_path+'generatedNeuroML2/%s.cell.nml'%cell
            doc = loaders.NeuroMLLoader.load(cell_file)
            all_cells[cell] = doc.cells[0]
            
            
            if params.is_level_D():
                new_cell = params.create_neuron_cell(cell, doc.cells[0].morphology)
                
                nml_cell_doc = NeuroMLDocument(id=cell)
                nml_cell_doc.cells.append(new_cell)
                new_cell_file = 'cells/'+cell+'_D.cell.nml'
                nml_file = target_directory+'/'+new_cell_file
                print_("Writing new cell to: %s"%os.path.realpath(nml_file))
                writers.NeuroMLWriter.write(nml_cell_doc, nml_file)
                
                nml_doc.includes.append(IncludeType(href=new_cell_file))
                lems_info["includes"].append(new_cell_file)
                
                inst.location = Location(0,0,0)
            else:
                location = doc.cells[0].morphology.segments[0].proximal
            
                inst.location = Location(float(location.x), float(location.y), float(location.z))
            
            if verbose: 
                print_("Loaded morphology: %s; id: %s; placing at location: (%s, %s, %s)"%(os.path.realpath(cell_file), all_cells[cell].id, inst.location.x, inst.location.y, inst.location.z))


                
            if cells_to_stimulate is None or cell in cells_to_stimulate:

                target = "../%s/0/%s"%(pop0.id, cell_id)
                if params.is_level_D():
                    target+="/0"
                
                input_list = InputList(id="Input_%s_%s"%(cell,params.offset_current.id),
                                     component=params.offset_current.id,
                                     populations='%s'%cell)

                input_list.input.append(Input(id=0, 
                              target=target, 
                              destination="synapses"))

                net.input_lists.append(input_list)


            if cells_to_plot is None or cell in cells_to_plot:
                plot = {}

                plot["cell"] = cell
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/v" % (cell, cell_id)
                lems_info["plots"].append(plot)

                if params.is_level_B():
                    plot = {}

                    plot["cell"] = cell
                    plot["colour"] = get_random_colour_hex()
                    plot["quantity"] = "%s/0/%s/activity" % (cell, cell_id)
                    lems_info["activity_plots"].append(plot)

                if is_cond_based_cell(params):
                    plot = {}

                    plot["cell"] = cell
                    plot["colour"] = get_random_colour_hex()
                    plot["quantity"] = "%s/0/%s/caConc" % (cell, cell_id)
                    lems_info["activity_plots"].append(plot)

            save = {}
            save["cell"] = cell
            save["quantity"] = "%s/0/%s/v" % (cell, cell_id)
            lems_info["to_save"].append(save)

            if params.is_level_B():
                save = {}
                save["cell"] = cell
                save["quantity"] = "%s/0/%s/activity" % (cell, cell_id)
                lems_info["activity_to_save"].append(save)
            if is_cond_based_cell(params):
                save = {}
                save["cell"] = cell
                save["quantity"] = "%s/0/%s/caConc" % (cell, cell_id)
                lems_info["activity_to_save"].append(save)

            lems_info["cells"].append(cell)

            count+=1

    if verbose: 
        print_("Finished loading %i cells"%count)

    
    mneurons, all_muscles, muscle_conns = get_cell_muscle_names_and_connection(data_reader)

    #if data_reader == "SpreadsheetDataReader":
    #    all_muscles = get_muscle_names()
        
    if muscles_to_include == None or muscles_to_include == True:
        muscles_to_include = all_muscles
    elif muscles_to_include == False:
        muscles_to_include = []
        
    for m in muscles_to_include:
        assert m in all_muscles

    if len(muscles_to_include)>0:

        muscle_count = 0
        for muscle in muscles_to_include:

            inst = Instance(id="0")

            # build a Population data structure out of the cell name
            pop0 = Population(id=muscle,
                              component=params.generic_muscle_cell.id,
                              type="populationList")
            pop0.instances.append(inst)


            # put that Population into the Network data structure from above
            net.populations.append(pop0)

            if cells_vs_name.has_key(muscle):
                # No muscles adopted yet, but just in case they are in future...
                p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[muscle])
                pop0.properties.append(p)

            x, y, z = get_muscle_position(muscle, data_reader)
            print_('Positioning muscle: %s at (%s,%s,%s)'%(muscle,x,y,z))
            inst.location = Location(x,y,z)

            #target = "%s/0/%s"%(pop0.id, params.generic_muscle_cell.id) # unused

            plot = {}

            plot["cell"] = muscle
            plot["colour"] = get_random_colour_hex()
            plot["quantity"] = "%s/0/%s/v" % (muscle, params.generic_muscle_cell.id)
            lems_info["muscle_plots"].append(plot)

            if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell':
                plot = {}

                plot["cell"] = muscle
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_muscle_cell.id)
                lems_info["muscle_activity_plots"].append(plot)
                
            if params.generic_muscle_cell.__class__.__name__ == 'Cell':
                plot = {}

                plot["cell"] = muscle
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/caConc" % (muscle, params.generic_muscle_cell.id)
                lems_info["muscle_activity_plots"].append(plot)

            save = {}
            save["cell"] = muscle
            save["quantity"] = "%s/0/%s/v" % (muscle, params.generic_muscle_cell.id)
            lems_info["muscles_to_save"].append(save)

            if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell':
                save = {}
                save["cell"] = muscle
                save["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_muscle_cell.id)
                lems_info["muscles_activity_to_save"].append(save)
            if params.generic_muscle_cell.__class__.__name__ == 'Cell':
                save = {}
                save["cell"] = muscle
                save["quantity"] = "%s/0/%s/caConc" % (muscle, params.generic_muscle_cell.id)
                lems_info["muscles_activity_to_save"].append(save)

            lems_info["muscles"].append(muscle)

            muscle_count+=1
            
            if muscle in cells_to_stimulate:

                target = "../%s/0/%s"%(pop0.id, params.generic_muscle_cell.id)
                if params.is_level_D():
                    target+="/0"
                
                input_list = InputList(id="Input_%s_%s"%(muscle,params.offset_current.id),
                                     component=params.offset_current.id,
                                     populations='%s'%pop0.id)

                input_list.input.append(Input(id=0, 
                              target=target, 
                              destination="synapses"))

                net.input_lists.append(input_list)

        if verbose: 
            print_("Finished creating %i muscles"%muscle_count)
        
    
    existing_synapses = {}

    for conn in conns:

        if conn.pre_cell in lems_info["cells"] and conn.post_cell in lems_info["cells"]:
            # take information about each connection and package it into a
            # NeuroML Projection data structure
            proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype)
            conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell)

            elect_conn = False
            analog_conn = False
            syn0 = params.neuron_to_neuron_exc_syn
            orig_pol = "exc"
            
            if 'GABA' in conn.synclass:
                syn0 = params.neuron_to_neuron_inh_syn
                orig_pol = "inh"
            if '_GJ' in conn.synclass:
                syn0 = params.neuron_to_neuron_elec_syn
                elect_conn = isinstance(params.neuron_to_neuron_elec_syn, GapJunction)
                conn_shorthand = "%s-%s_GJ" % (conn.pre_cell, conn.post_cell)

            if conns_to_include and conn_shorthand not in conns_to_include:
                continue

            print conn_shorthand + " " + str(conn.number) + " " + orig_pol + " " + conn.synclass

            polarity = None
            if conn_polarity_override and conn_polarity_override.has_key(conn_shorthand):
                polarity = conn_polarity_override[conn_shorthand]

            if polarity and not elect_conn:
                if polarity == 'inh':
                    syn0 = params.neuron_to_neuron_inh_syn
                else:
                    syn0 = params.neuron_to_neuron_exc_syn
                if verbose and polarity != orig_pol:
                    print_(">> Changing polarity of connection %s -> %s: was: %s, becomes %s " % \
                       (conn.pre_cell, conn.post_cell, orig_pol, polarity))
                
                
                
            if isinstance(syn0, GradedSynapse) or isinstance(syn0, GradedSynapse2):
                analog_conn = True
                if len(nml_doc.silent_synapses)==0:
                    silent = SilentSynapse(id="silent")
                    nml_doc.silent_synapses.append(silent)

            number_syns = conn.number

            if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)):
                number_syns = conn_number_override[conn_shorthand]
            elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)):
                number_syns = conn.number*conn_number_scaling[conn_shorthand]
            '''
            else:
                print conn_shorthand
                print conn_number_override
                print conn_number_scaling'''
            """if polarity:
                print "%s %s num:%s" % (conn_shorthand, polarity, number_syns)
            elif elect_conn:
                print "%s num:%s" % (conn_shorthand, number_syns)
            else:
                print "%s %s num:%s" % (conn_shorthand, orig_pol, number_syns)"""
            
            if number_syns != conn.number:
                if analog_conn or elect_conn:
                    magnitude, unit = bioparameters.split_neuroml_quantity(syn0.conductance)
                else:
                    magnitude, unit = bioparameters.split_neuroml_quantity(syn0.gbase)
                cond0 = "%s%s"%(magnitude*conn.number, unit)
                cond1 = "%s%s" % (get_str_from_expnotation(magnitude * number_syns), unit)
                gj = "" if not elect_conn else " GapJunction"
                if verbose: 
                    print_(">> Changing number of effective synapses connection %s -> %s%s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \
                     (conn.pre_cell, conn.post_cell, gj, conn.number, cond0, number_syns, cond1))

            #print "######## %s-%s %s %s" % (conn.pre_cell, conn.post_cell, conn.synclass, number_syns)
            #known_motor_prefixes = ["VA"]
            #if conn.pre_cell.startswith(tuple(known_motor_prefixes)) or conn.post_cell.startswith(tuple(known_motor_prefixes)):
            #    print "######### %s-%s %s %s" % (conn.pre_cell, conn.post_cell, number_syns, conn.synclass)

            syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses)

            if elect_conn:

                proj0 = ElectricalProjection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell)

                net.electrical_projections.append(proj0)

                pre_cell_id=get_cell_id_string(conn.pre_cell, params)
                post_cell_id= get_cell_id_string(conn.post_cell, params)

                #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id))

                # Add a Connection with the closest locations
                conn0 = ElectricalConnectionInstance(id="0", \
                           pre_cell=pre_cell_id,
                           post_cell=post_cell_id,
                           synapse=syn_new.id)

                proj0.electrical_connection_instances.append(conn0)
                
            elif analog_conn:
        
                proj0 = ContinuousProjection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell)

                net.continuous_projections.append(proj0)

                pre_cell_id= get_cell_id_string(conn.pre_cell, params)
                post_cell_id= get_cell_id_string(conn.post_cell, params)

                conn0 = ContinuousConnectionInstance(id="0", \
                           pre_cell=pre_cell_id,
                           post_cell=post_cell_id,
                           pre_component="silent",
                           post_component=syn_new.id)

                proj0.continuous_connection_instances.append(conn0)
                
                
            else:

                proj0 = Projection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell,
                                   synapse=syn_new.id)

                net.projections.append(proj0)

                pre_cell_id= get_cell_id_string(conn.pre_cell, params)
                post_cell_id= get_cell_id_string(conn.post_cell, params)

                conn0 = ConnectionWD(id="0", \
                           pre_cell_id=pre_cell_id,
                           post_cell_id=post_cell_id,
                           weight = number_syns,
                           delay = '0ms')

                proj0.connection_wds.append(conn0)



    if len(muscles_to_include)>0:
        for conn in muscle_conns:
            if not conn.post_cell in muscles_to_include:
                continue
            if not conn.pre_cell in lems_info["cells"] and not conn.pre_cell in muscles_to_include:
                continue

            # take information about each connection and package it into a
            # NeuroML Projection data structure
            proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype)
            conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell)

            elect_conn = False
            analog_conn = False
            syn0 = params.neuron_to_muscle_exc_syn
            orig_pol = "exc"
            if 'GABA' in conn.synclass:
                syn0 = params.neuron_to_muscle_inh_syn
                orig_pol = "inh"
            
            if '_GJ' in conn.synclass :
                elect_conn = isinstance(params.neuron_to_muscle_elec_syn, GapJunction)
                conn_shorthand = "%s-%s_GJ" % (conn.pre_cell, conn.post_cell)
                if conn.pre_cell in lems_info["cells"]:
                    syn0 = params.neuron_to_muscle_elec_syn
                elif conn.pre_cell in muscles_to_include:
                    try:
                        syn0 = params.muscle_to_muscle_elec_syn
                    except:
                        syn0 = params.neuron_to_muscle_elec_syn

            if conns_to_include and conn_shorthand not in conns_to_include:
                continue
                
            print conn_shorthand + " " + str(conn.number) + " " + orig_pol + " " + conn.synclass

            polarity = None
            if conn_polarity_override and conn_polarity_override.has_key(conn_shorthand):
                polarity = conn_polarity_override[conn_shorthand]

            if polarity and not elect_conn:
                if polarity == 'inh':
                    syn0 = params.neuron_to_neuron_inh_syn
                else:
                    syn0 = params.neuron_to_neuron_exc_syn
                if verbose and polarity != orig_pol:
                    print_(">> Changing polarity of connection %s -> %s: was: %s, becomes %s " % \
                       (conn.pre_cell, conn.post_cell, orig_pol, polarity))

            if isinstance(syn0, GradedSynapse) or isinstance(syn0, GradedSynapse2):
                analog_conn = True
                if len(nml_doc.silent_synapses)==0:
                    silent = SilentSynapse(id="silent")
                    nml_doc.silent_synapses.append(silent)
                    
            number_syns = conn.number
            
            if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)):
                number_syns = conn_number_override[conn_shorthand]
            elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)):
                number_syns = conn.number*conn_number_scaling[conn_shorthand]
            '''
            else:
                print conn_shorthand
                print conn_number_override
                print conn_number_scaling'''
            """if polarity:
                print "%s %s num:%s" % (conn_shorthand, polarity, number_syns)
            elif elect_conn:
                print "%s num:%s" % (conn_shorthand, number_syns)
            else:
                print "%s %s num:%s" % (conn_shorthand, orig_pol, number_syns)"""

            if number_syns != conn.number:
                
                if analog_conn or elect_conn:
                    magnitude, unit = bioparameters.split_neuroml_quantity(syn0.conductance)
                else:
                    magnitude, unit = bioparameters.split_neuroml_quantity(syn0.gbase)
                cond0 = "%s%s"%(magnitude*conn.number, unit)
                cond1 = "%s%s" % (get_str_from_expnotation(magnitude * number_syns), unit)
                gj = "" if not elect_conn else " GapJunction"
                if verbose: 
                    print_(">> Changing number of effective synapses connection %s -> %s%s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \
                     (conn.pre_cell, conn.post_cell, gj, conn.number, cond0, number_syns, cond1))


            syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses)

            if elect_conn:

                proj0 = ElectricalProjection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell)

                net.electrical_projections.append(proj0)

                pre_cell_id= get_cell_id_string(conn.pre_cell, params)
                post_cell_id= get_cell_id_string(conn.post_cell, params, muscle=True)

                #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id))

                # Add a Connection with the closest locations
                conn0 = ElectricalConnectionInstance(id="0", \
                           pre_cell=pre_cell_id,
                           post_cell=post_cell_id,
                           synapse=syn_new.id)

                proj0.electrical_connection_instances.append(conn0)
                
            elif analog_conn:
        
                proj0 = ContinuousProjection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell)

                net.continuous_projections.append(proj0)

                pre_cell_id= get_cell_id_string(conn.pre_cell, params)
                post_cell_id= get_cell_id_string(conn.post_cell, params, muscle=True)

                conn0 = ContinuousConnectionInstance(id="0", \
                           pre_cell=pre_cell_id,
                           post_cell=post_cell_id,
                           pre_component="silent",
                           post_component=syn_new.id)

                proj0.continuous_connection_instances.append(conn0)

            else:

                proj0 = Projection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell,
                                   synapse=syn_new.id)

                net.projections.append(proj0)

                # Add a Connection with the closest locations

                pre_cell_id= get_cell_id_string(conn.pre_cell, params)
                post_cell_id= get_cell_id_string(conn.post_cell, params, muscle=True)

                conn0 = Connection(id="0", \
                           pre_cell_id=pre_cell_id,
                           post_cell_id=post_cell_id)

                proj0.connections.append(conn0)



    # import pprint
    # pprint.pprint(lems_info)
    template_path = root_dir+'/../' if test else root_dir+'/' # if running test
    write_to_file(nml_doc, lems_info, net_id, template_path, validate=validate, verbose=verbose, target_directory=target_directory)


    return nml_doc
Esempio n. 10
0
def generatePopulationLEMS(pops, n_pops, amplitudes, baseline, sim_length,
                           delay):
    def generatePopulationProjection(from_pop, to_pop, n_from_pop, n_to_pop,
                                     w_to_from_pop, p_to_from_pop, net):
        connection_count = 0
        projection = ContinuousProjection(
            id='%s_%s' % (from_pop, to_pop),
            presynaptic_population='%sPop' % from_pop,
            postsynaptic_population='%sPop' % to_pop)
        for idx_from_pop in range(n_from_pop):
            for idx_to_pop in range(n_to_pop):
                if random.random() <= p_to_from_pop:
                    pre_comp = from_pop.upper()
                    to_comp = to_pop.upper()
                    connection = ContinuousConnectionInstanceW(
                        id=connection_count,
                        pre_cell='../%sPop/%i/%s' %
                        (from_pop, idx_from_pop, pre_comp),
                        post_cell='../%sPop/%i/%s' %
                        (to_pop, idx_to_pop, to_comp),
                        pre_component='silent1',
                        post_component='rs',
                        weight=w_to_from_pop / (p_to_from_pop * n_from_pop))
                    projection.continuous_connection_instance_ws.append(
                        connection)
                    connection_count += 1
        if connection_count > 0:
            net.continuous_projections.append(projection)

    # Connection probabilities for each pop in the population
    w_to_from_pops = np.array([[2.42, -.33, -0.80, 0], [2.97, -3.45, -2.13, 0],
                               [4.64, 0, 0, -2.79], [0.71, 0, -0.16, 0]])

    # p_to_from_pop = np.array([[1, 1,    1,     0],
    #                           [1, 1, 1,     0],
    #                           [1, 0,    0,  1],
    #                           [1, 0,  1,     0]])
    p_to_from_pop = np.array([[0.02, 1, 1, 0], [0.01, 1, 0.85, 0],
                              [0.01, 0, 0, 0.55], [0.01, 0, 0.5, 0]])

    nml_doc = NeuroMLDocument(id='RandomPopulation')

    # Add silent synapsis
    silent_syn = SilentSynapse(id='silent1')
    nml_doc.silent_synapses.append(silent_syn)

    for pop_idx, pop in enumerate(pops):
        pulse = PulseGenerator(id='baseline_%s' % pop,
                               delay='0ms',
                               duration=str(sim_length) + 'ms',
                               amplitude=amplitudes[pop_idx])
        nml_doc.pulse_generators.append(pulse)

        if pop == 'vip':
            # time point when additional current is induced
            pulse_mod = PulseGenerator(id='modVIP',
                                       delay=str(delay) + 'ms',
                                       duration=str(sim_length - delay) + 'ms',
                                       amplitude='10 pA')
            nml_doc.pulse_generators.append(pulse_mod)

    # Create the network and add the 4 different populations
    net = Network(id='net2')
    nml_doc.networks.append(net)

    colours = ['0 0 1', '1 0 0', '.5 0 .5', '0 1 0']
    centres = [(0, 0, 0), (-1200, 0, 0), (-800, 800, 0), (0, 1200, 0)]
    radii = [800, 200, 200, 200]
    # Populate the network with the 4 populations
    for pop_idx, pop in enumerate(pops):
        pop = Population(id='%sPop' % pop,
                         component=(pops[pop_idx]).upper(),
                         size=n_pops[pop_idx],
                         type='populationList')
        net.populations.append(pop)
        pop.properties.append(Property(tag='color', value=colours[pop_idx]))
        pop.properties.append(Property(tag='radius', value=10))

        for n_pop in range(n_pops[pop_idx]):
            inst = Instance(id=n_pop)
            pop.instances.append(inst)
            x, y, z = centres[pop_idx]
            r = (random.random() * radii[pop_idx]**3)**(1. / 3)
            theta = random.random() * math.pi
            phi = random.random() * math.pi * 2

            inst.location = Location(
                x=str(x + r * math.sin(theta) * math.cos(phi)),
                y=str(y + r * math.sin(theta) * math.sin(phi)),
                z=str(z + r * math.cos(theta)))

    for from_idx, from_pop in enumerate(pops):
        for to_idx, to_pop in enumerate(pops):
            generatePopulationProjection(pops[from_idx], pops[to_idx],
                                         n_pops[from_idx], n_pops[to_idx],
                                         w_to_from_pops[to_idx, from_idx],
                                         p_to_from_pop[to_idx, from_idx], net)
    # Add inputs
    for pop_idx, pop in enumerate(pops):

        input_list = InputList(id='baseline_%s' % pop,
                               component='baseline_%s' % pops[pop_idx],
                               populations='%sPop' % pop)
        net.input_lists.append(input_list)

        if pop == 'vip':
            input_list_mod = InputList(id='modulation_%s' % pop,
                                       component='modVIP',
                                       populations='%sPop' % pop)
            net.input_lists.append(input_list_mod)

        for n_idx in range(n_pops[pop_idx]):
            input = Input(id=n_idx,
                          target='../%sPop/%i/%s' % (pop, n_idx, pop.upper()),
                          destination='synapses')
            input_list.input.append(input)

            # if vip add modulatory input
            if pop == 'vip':

                mod_input = Input(id=n_idx,
                                  target='../vipPop/%i/VIP' % n_idx,
                                  destination='synapses')
                input_list_mod.input.append(mod_input)

    nml_file = 'RandomPopulationRate_%s_baseline.nml' % baseline
    writers.NeuroMLWriter.write(nml_doc, nml_file)
    print('Written network file to: %s' % nml_file)

    # Validate the NeuroML
    from neuroml.utils import validate_neuroml2
    validate_neuroml2(nml_file)
Esempio n. 11
0
def setup(parameter_set,
          generate=False,
          duration=1000,
          dt=0.05,
          target_directory='examples',
          data_reader="SpreadsheetDataReader",
          param_overrides={},
          config_param_overrides={},
          verbose=True):

    exec('from parameters_%s import ParameterisedModel' % parameter_set,
         globals())
    params = ParameterisedModel()

    params.set_bioparameter("unphysiological_offset_current", "0pA",
                            "Disabling offset current", "0")

    #params.set_bioparameter("exc_syn_conductance", ".20 nS", "BlindGuess", "0.1")
    params.set_bioparameter("chem_exc_syn_decay", "5 ms", "BlindGuess", "0.1")

    #params.set_bioparameter("inh_syn_conductance", ".35 nS", "BlindGuess", "0.1")
    params.set_bioparameter("chem_inh_syn_decay", "200 ms", "BlindGuess",
                            "0.1")

    #params.set_bioparameter("elec_syn_gbase", "0.001 nS", "BlindGuess", "0.1")

    # Any neurons connected to muscles

    cells = [
        'AS1', 'AS10', 'AS11', 'AS2', 'AS3', 'AS4', 'AS5', 'AS6', 'AS7', 'AS8',
        'AS9', 'AVFL', 'AVFR', 'AVKR', 'AVL', 'CEPVL', 'CEPVR', 'DA1', 'DA2',
        'DA3', 'DA4', 'DA5', 'DA6', 'DA7', 'DA8', 'DA9', 'DB1', 'DB2', 'DB3',
        'DB4', 'DB5', 'DB6', 'DB7', 'DD1', 'DD2', 'DD3', 'DD4', 'DD5', 'DD6',
        'DVB', 'HSNL', 'HSNR', 'IL1DL', 'IL1DR', 'IL1L', 'IL1R', 'IL1VL',
        'IL1VR', 'PDA', 'PDB', 'PVNL', 'PVNR', 'RID', 'RIML', 'RIMR', 'RIVL',
        'RIVR', 'RMDDL', 'RMDDR', 'RMDL', 'RMDR', 'RMDVL', 'RMDVR', 'RMED',
        'RMEL', 'RMER', 'RMEV', 'RMFL', 'RMGL', 'RMGR', 'RMHL', 'RMHR',
        'SMBDL', 'SMBDR', 'SMBVL', 'SMBVR', 'SMDDL', 'SMDDR', 'SMDVL', 'SMDVR',
        'URADL', 'URADR', 'URAVL', 'URAVR', 'VA1', 'VA10', 'VA11', 'VA12',
        'VA2', 'VA3', 'VA4', 'VA5', 'VA6', 'VA7', 'VA8', 'VA9', 'VB1', 'VB10',
        'VB11', 'VB2', 'VB3', 'VB4', 'VB5', 'VB6', 'VB7', 'VB8', 'VB9', 'VC1',
        'VC2', 'VC3', 'VC4', 'VC5', 'VC6', 'VD1', 'VD10', 'VD11', 'VD12',
        'VD13', 'VD2', 'VD3', 'VD4', 'VD5', 'VD6', 'VD7', 'VD8', 'VD9'
    ]

    cells += ['AVAL', 'AVAR', 'AVBL', 'AVBR', 'AVDL', 'AVDR', 'PVCL', 'PVCR']
    #cells=None  # implies all cells...

    ## Some random set of neurons
    #probability = 0.1
    cells_to_stimulate = []
    '''
    for cell in cells:
        #if random.random()<probability:
        #    cells_to_stimulate.append(cell)
        if cell.startswith("xxVB") or cell.startswith("DB"):
            cells_to_stimulate.append(cell)'''
    #cells_to_stimulate = ['DB1', 'VB1']

    #cells_to_stimulate = ['PVCL', 'AVBL']
    #cells_to_stimulate.extend(['DB1', 'VB1'])
    #cells_to_stimulate = ['PVCL','PVCR']
    #cells_to_stimulate = ['PLML','PLMR']
    cells_to_stimulate = ['AVBL', 'AVBR']

    # Plot some directly stimulated & some not stimulated
    #cells_to_plot      = ['AS1', 'AS10', 'AVFL', 'DA1','DB1','DB4','DB7','IL1DL','RID', 'RIML','SMBDL', 'SMBDR', 'VB1', 'VB5', 'VB10','VC1', 'VC2']
    cells_to_plot = [
        'AVBL', 'AVBR', 'PVCL', 'PVCR', 'DB1', 'DB2', 'VB1', 'VB2', 'DD1',
        'DD2', 'VD1', 'VD2'
    ]

    reference = "c302_%s_MusclesSine" % parameter_set

    muscles_to_include = True  #includes all muscles in plots
    nml_doc = None

    if generate:
        nml_doc = c302.generate(reference,
                                params,
                                cells=cells,
                                cells_to_plot=cells_to_plot,
                                cells_to_stimulate=cells_to_stimulate,
                                muscles_to_include=muscles_to_include,
                                duration=duration,
                                dt=dt,
                                target_directory=target_directory,
                                param_overrides=param_overrides,
                                verbose=verbose,
                                data_reader=data_reader)

    # Import from libNeuroML
    from neuroml import SineGenerator, InputList, Input
    import neuroml.writers as writers

    # Create the sine wave current generator & add to NeuroML document
    sw_input = SineGenerator(id='NewSineWaveInput',
                             delay='100ms',
                             phase='0',
                             duration='800ms',
                             amplitude='4.5pA',
                             period='200ms')

    nml_doc.sine_generators.append(sw_input)

    # Which cell to stimulate
    cell = 'AVBL'

    # create an InputList and add one Input to that cell
    input_list = InputList(id="Input_%s_%s" % (cell, sw_input.id),
                           component=sw_input.id,
                           populations='%s' % cell)
    input_list.input.append(
        Input(id=0,
              target="../%s/0/GenericNeuronCell" % cell,
              destination="synapses"))
    nml_doc.networks[0].input_lists.append(input_list)

    # Write over network file created already...
    nml_file = target_directory + '/' + reference + '.net.nml'
    writers.NeuroMLWriter.write(nml_doc, nml_file)

    c302.print_("(Re)written network file to: " + nml_file)

    return cells, cells_to_stimulate, params, muscles_to_include, nml_doc