Esempio n. 1
0
def generate():

    dt = 0.025
    simtime = 1000

    ################################################################################
    ###   Build new network

    net = Network(id="Example7_Brunel2000")
    net.notes = "Example 7: based on network of Brunel 2000"

    net.parameters = {
        "g": 4,
        "eta": 1,
        "order": 5,
        "epsilon": 0.1,
        "J": 0.1,
        "delay": 1.5,
        "tauMem": 20.0,
        "tauSyn": 0.1,
        "tauRef": 2.0,
        "U0": 0.0,
        "theta": 20.0,
    }

    cell = Cell(id="ifcell", pynn_cell="IF_curr_alpha")

    cell.parameters = {
        "tau_m": "tauMem",
        "tau_refrac": "tauRef",
        "v_rest": "U0",
        "v_reset": "U0",
        "v_thresh": "theta",
        "cm": 0.001,
        "i_offset": 0,
    }

    # cell = Cell(id='hhcell', neuroml2_source_file='test_files/hhcell.cell.nml')
    net.cells.append(cell)

    poisson_input = Cell(id="poisson_input", pynn_cell="SpikeSourcePoisson")
    poisson_input.parameters = {
        "rate":
        "1000 * (eta*theta/(J*4*order*epsilon*tauMem)) * (4*order*epsilon)",
        "start": 0,
        "duration": 1e9,
    }
    net.cells.append(poisson_input)

    r1 = RectangularRegion(id="region1",
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    pE = Population(
        id="Epop",
        size="4*order",
        component=cell.id,
        properties={
            "color": ".9 0 0",
            "radius": 5
        },
        random_layout=RandomLayout(region=r1.id),
    )
    pEpoisson = Population(
        id="expoisson",
        size="4*order",
        component=poisson_input.id,
        properties={
            "color": "0.9 0.7 0.7",
            "radius": 3
        },
        random_layout=RandomLayout(region=r1.id),
    )
    pI = Population(
        id="Ipop",
        size="1*order",
        component=cell.id,
        properties={
            "color": "0 0 .9",
            "radius": 5
        },
        random_layout=RandomLayout(region=r1.id),
    )
    pIpoisson = Population(
        id="inpoisson",
        size="1*order",
        component=poisson_input.id,
        properties={
            "color": "0.7 0.7 0.9",
            "radius": 3
        },
        random_layout=RandomLayout(region=r1.id),
    )

    net.populations.append(pE)
    net.populations.append(pEpoisson)
    net.populations.append(pI)
    net.populations.append(pIpoisson)

    net.synapses.append(
        Synapse(
            id="ampa",
            pynn_receptor_type="excitatory",
            pynn_synapse_type="curr_alpha",
            parameters={"tau_syn": 0.1},
        ))

    net.synapses.append(
        Synapse(
            id="gaba",
            pynn_receptor_type="inhibitory",
            pynn_synapse_type="curr_alpha",
            parameters={"tau_syn": 0.1},
        ))

    delay_ext = dt

    downscale = 1
    J_eff = "J*%s" % (downscale)
    # synaptic weights, scaled for alpha functions, such that
    # for constant membrane potential, charge J would be deposited
    fudge = 0.00041363506632638  # ensures dV = J at V=0
    JE = "((%s)/tauSyn)*%s" % (J_eff, fudge)
    JI = "-1*g*%s" % (JE)

    net.projections.append(
        Projection(
            id="projEinput",
            presynaptic=pEpoisson.id,
            postsynaptic=pE.id,
            synapse="ampa",
            delay=delay_ext,
            weight=JE,
            one_to_one_connector=OneToOneConnector(),
        ))

    net.projections.append(
        Projection(
            id="projIinput",
            presynaptic=pIpoisson.id,
            postsynaptic=pI.id,
            synapse="ampa",
            delay=delay_ext,
            weight=JE,
            one_to_one_connector=OneToOneConnector(),
        ))

    net.projections.append(
        Projection(
            id="projEE",
            presynaptic=pE.id,
            postsynaptic=pE.id,
            synapse="ampa",
            delay="delay",
            weight=JE,
            random_connectivity=RandomConnectivity(probability="epsilon"),
        ))

    net.projections.append(
        Projection(
            id="projEI",
            presynaptic=pE.id,
            postsynaptic=pI.id,
            synapse="ampa",
            delay="delay",
            weight=JE,
            random_connectivity=RandomConnectivity(probability="epsilon"),
        ))

    net.projections.append(
        Projection(
            id="projIE",
            presynaptic=pI.id,
            postsynaptic=pE.id,
            synapse="gaba",
            delay="delay",
            weight=JI,
            random_connectivity=RandomConnectivity(probability="epsilon"),
        ))

    net.projections.append(
        Projection(
            id="projII",
            presynaptic=pI.id,
            postsynaptic=pI.id,
            synapse="gaba",
            delay="delay",
            weight=JI,
            random_connectivity=RandomConnectivity(probability="epsilon"),
        ))

    # print(net)
    # print(net.to_json())
    new_file = net.to_json_file("%s.json" % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(
        id="SimExample7",
        network=new_file,
        duration=simtime,
        dt=dt,
        seed=123,
        record_traces={
            pE.id: [0, 1],
            pI.id: [0, 1]
        },
        record_spikes={
            pE.id: "*",
            pI.id: "*",
            pEpoisson.id: [0, 1, 2, 3, 4],
            pIpoisson.id: [0, 1, 2, 3, 4],
        },
    )

    sim.to_json_file()

    return sim, net
Esempio n. 2
0
from neuromllite import Network, Cell, InputSource, Population, Synapse
from neuromllite import Projection, RandomConnectivity, Input, Simulation
import sys

################################################################################
###   Build new network

net = Network(id="Spikers")
net.notes = "Example with spiking entities.."
net.parameters = {"N": 10, "weightInput": 10, "input_rate": 40}

cell = Cell(id="iafcell", pynn_cell="IF_cond_alpha")
cell.parameters = {"tau_refrac": 10}
net.cells.append(cell)

input_cell = Cell(id="InputCell", pynn_cell="SpikeSourcePoisson")
input_cell.parameters = {
    "start": 0,
    "duration": 10000000000,
    "rate": "input_rate"
}
net.cells.append(input_cell)

input_cell_100 = Cell(id="InputCell100", pynn_cell="SpikeSourcePoisson")
input_cell_100.parameters = {"start": 0, "duration": 10000000000, "rate": 100}
net.cells.append(input_cell_100)

input_source_p0 = InputSource(id="poissonFiringSyn",
                              neuroml2_source_file="../test_files/inputs.nml")
net.input_sources.append(input_source_p0)
Esempio n. 3
0
from neuromllite import Projection, RandomConnectivity, Input, Simulation
import sys

################################################################################
###   Build new network

net = Network(id='PopExample')
net.notes = 'Testing...'

net.seed = 1234

net.parameters = { 'N': 10, 'fractionE': 0.8, 'weightInput': 1, 'Wei':0.01, 'Wie':0.01}


cell = Cell(id='iafcell', pynn_cell='IF_cond_alpha')
cell.parameters = { "tau_refrac":0}
net.cells.append(cell)


input_source = InputSource(id='poissonFiringSyn100Hz', neuroml2_source_file='inputs.nml')
net.input_sources.append(input_source)

                           
net.input_sources.append(input_source)


pE = Population(id='Epop', size='int(N*fractionE)', component=cell.id, properties={'color':'.7 0 0'})
pI = Population(id='Ipop', size='N - int(N*fractionE)', component=cell.id, properties={'color':'0 0 .7'})

net.populations.append(pE)
net.populations.append(pI)
Esempio n. 4
0
def generate():

    dt = 0.025
    simtime = 500

    ################################################################################
    ###   Build new network

    net = Network(id='SpikingEI')
    net.notes = 'SpikingEI'

    net.parameters = {
        'order': 5,
        'wee': 8,
        'wei': 12,
        'wie': -12,
        'wii': -3,
        'w_scale': 0.001,
        'in_rate': 400,
        'epsilon': 0.5,
        'tauMem': 20.0,
        'tauSyn': 0.1,
        'tauRef': 2.0
    }

    cell = Cell(id='ifcell', pynn_cell='IF_curr_alpha')

    cell.parameters = {
        'tau_m': 'tauMem',
        'tau_refrac': 'tauRef',
        'v_rest': -70,
        'v_reset': -70,
        'v_thresh': -50,
        'cm': 0.001,
        "i_offset": 0
    }

    #cell = Cell(id='hhcell', neuroml2_source_file='test_files/hhcell.cell.nml')
    net.cells.append(cell)

    poisson_input = Cell(id='poisson_input', pynn_cell='SpikeSourcePoisson')
    poisson_input.parameters = {'rate': 'in_rate', 'start': 0, 'duration': 1e9}
    net.cells.append(poisson_input)

    r1 = RectangularRegion(id='region1',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    pE = Population(id='Excitatory',
                    size='4*order',
                    component=cell.id,
                    properties={
                        'color': '.9 0 0',
                        'radius': 5
                    },
                    random_layout=RandomLayout(region=r1.id))
    pEpoisson = Population(id='expoisson',
                           size='4*order',
                           component=poisson_input.id,
                           properties={
                               'color': '0.9 0.7 0.7',
                               'radius': 3
                           },
                           random_layout=RandomLayout(region=r1.id))
    pI = Population(id='Inhibitory',
                    size='1*order',
                    component=cell.id,
                    properties={
                        'color': '0 0 .9',
                        'radius': 5
                    },
                    random_layout=RandomLayout(region=r1.id))
    pIpoisson = Population(id='inpoisson',
                           size='1*order',
                           component=poisson_input.id,
                           properties={
                               'color': '0.7 0.7 0.9',
                               'radius': 3
                           },
                           random_layout=RandomLayout(region=r1.id))

    net.populations.append(pE)
    net.populations.append(pEpoisson)
    net.populations.append(pI)
    net.populations.append(pIpoisson)

    net.synapses.append(
        Synapse(id='ampa',
                pynn_receptor_type='excitatory',
                pynn_synapse_type='curr_alpha',
                parameters={'tau_syn': 0.1}))

    net.synapses.append(
        Synapse(id='gaba',
                pynn_receptor_type='inhibitory',
                pynn_synapse_type='curr_alpha',
                parameters={'tau_syn': 0.1}))

    delay_ext = dt

    net.projections.append(
        Projection(id='projEinput',
                   presynaptic=pEpoisson.id,
                   postsynaptic=pE.id,
                   synapse='ampa',
                   delay=delay_ext,
                   weight=0.01,
                   one_to_one_connector=OneToOneConnector()))

    net.projections.append(
        Projection(id='projIinput',
                   presynaptic=pIpoisson.id,
                   postsynaptic=pI.id,
                   synapse='ampa',
                   delay=delay_ext,
                   weight=0.01,
                   one_to_one_connector=OneToOneConnector()))

    net.projections.append(
        Projection(
            id='projEE',
            presynaptic=pE.id,
            postsynaptic=pE.id,
            synapse='ampa',
            delay=delay_ext,
            weight='wee * w_scale',
            random_connectivity=RandomConnectivity(probability='epsilon')))

    net.projections.append(
        Projection(
            id='projEI',
            presynaptic=pE.id,
            postsynaptic=pI.id,
            synapse='ampa',
            delay=delay_ext,
            weight='wei * w_scale',
            random_connectivity=RandomConnectivity(probability='epsilon')))

    net.projections.append(
        Projection(
            id='projIE',
            presynaptic=pI.id,
            postsynaptic=pE.id,
            synapse='gaba',
            delay=delay_ext,
            weight='wie * w_scale',
            random_connectivity=RandomConnectivity(probability='epsilon')))

    net.projections.append(
        Projection(
            id='projII',
            presynaptic=pI.id,
            postsynaptic=pI.id,
            synapse='gaba',
            delay=delay_ext,
            weight='wii * w_scale',
            random_connectivity=RandomConnectivity(probability='epsilon')))

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='SimSpiking',
                     network=new_file,
                     duration=simtime,
                     dt=dt,
                     seed=123,
                     recordTraces={
                         pE.id: '*',
                         pI.id: '*'
                     },
                     recordSpikes={'all': '*'})

    sim.to_json_file()

    return sim, net
Esempio n. 5
0
from neuromllite import Network, Cell, InputSource, Population, Synapse
from neuromllite import Projection, RandomConnectivity, Input, Simulation
import sys

################################################################################
###   Build new network

net = Network(id='IzhikevichTest')
net.notes = 'Example Izhikevich'
net.parameters = {'N': 1}

cell = Cell(id='izhCell', neuroml2_cell='izhikevich2007Cell')
cell.parameters = {}

params = {'v0':'-60mV', 'C':'100 pF', 'k':'0.7 nS_per_mV', \
          'vr':'-60 mV', 'vt':'-40 mV', 'vpeak':'35 mV', \
          'a':'0.03 per_ms', 'b':'-2 nS', 'c':'-50 mV', 'd':'100 pA'}

for p in params:
    cell.parameters[p] = p
    net.parameters[p] = params[p]

net.cells.append(cell)

pop = Population(id='izhPop',
                 size='1',
                 component=cell.id,
                 properties={'color': '.7 0 0'})
net.populations.append(pop)

net.parameters['delay'] = '100ms'
Esempio n. 6
0
################################################################################
###   Build new network

net = Network(id='ArborExample')
net.notes = 'Example for testing Arbor'

net.parameters = {
    'v_init': -50,
    'input_amp': 0.190,
    'input_del': 100,
    'input_dur': 800
}

cell = Cell(id='test_arbor_cell', arbor_cell='cable_cell')

cell.parameters = {'v_init': 'v_init', 'radius': 3, 'mechanism': 'hh'}

net.cells.append(cell)
'''
cell2 = Cell(id='testcell2', pynn_cell='IF_cond_alpha')
cell2.parameters = { "tau_refrac":5, "i_offset":-.1 }
net.cells.append(cell2)'''

input_source = InputSource(id='i_clamp',
                           pynn_input='DCSource',
                           parameters={
                               'amplitude': 'input_amp',
                               'start': 'input_del',
                               'stop': 'input_del+input_dur'
                           })
Esempio n. 7
0
###   Build new network

net = Network(id="ArborExample")
net.notes = "Example for testing Arbor"

net.parameters = {
    "v_init": -50,
    "scale": 3,
    "input_amp": 0.01,
    "input_del": 50,
    "input_dur": 5,
}

cell = Cell(id="test_arbor_cell", arbor_cell="cable_cell")

cell.parameters = {"v_init": "v_init", "radius": 3, "mechanism": "hh"}

net.cells.append(cell)
"""
cell2 = Cell(id='testcell2', pynn_cell='IF_cond_alpha')
cell2.parameters = { "tau_refrac":5, "i_offset":-.1 }
net.cells.append(cell2)"""

input_source = InputSource(
    id="i_clamp",
    pynn_input="DCSource",
    parameters={
        "amplitude": "input_amp",
        "start": "input_del",
        "stop": "input_del+input_dur",
    },
Esempio n. 8
0
def generate():
    ################################################################################
    ###   Build new network

    net = Network(id='Example7_Brunel2000')
    net.notes = 'Example 7: based on network of Brunel 2000'

    net.parameters = {
        'g': 4,
        'eta': 1,
        'order': 5,
        'epsilon': 0.1,
        'J': 0.1,
        'delay': 1.5,
        'tauMem': 20.0,
        'tauSyn': 0.1,
        'tauRef': 2.0,
        'U0': 0.0,
        'theta': 20.0
    }

    cell = Cell(id='ifcell', pynn_cell='IF_curr_alpha')

    cell.parameters = {
        'tau_m': 'tauMem',
        'tau_refrac': 'tauRef',
        'v_rest': 'U0',
        'v_reset': 'U0',
        'v_thresh': 'theta',
        'cm': 0.001,
        "i_offset": 0
    }

    #cell = Cell(id='hhcell', neuroml2_source_file='test_files/hhcell.cell.nml')
    net.cells.append(cell)

    expoisson = Cell(id='expoisson', pynn_cell='SpikeSourcePoisson')
    expoisson.parameters = {
        'rate':
        '1000 * (eta*theta/(J*4*order*epsilon*tauMem)) * (4*order*epsilon)',
        'start': 0,
        'duration': 1e9
    }
    net.cells.append(expoisson)
    '''
    input_source = InputSource(id='iclamp0', 
                               pynn_input='DCSource', 
                               parameters={'amplitude':0.002, 'start':100., 'stop':900.})

    input_source = InputSource(id='poissonFiringSyn', 
                               neuroml2_input='poissonFiringSynapse',
                               parameters={'average_rate':"eta", 'synapse':"ampa", 'spike_target':"./ampa"})



    net.input_sources.append(input_source)'''

    pE = Population(id='Epop',
                    size='4*order',
                    component=cell.id,
                    properties={'color': '1 0 0'})
    pEpoisson = Population(id='Einput',
                           size='4*order',
                           component=expoisson.id,
                           properties={'color': '.5 0 0'})
    pI = Population(id='Ipop',
                    size='1*order',
                    component=cell.id,
                    properties={'color': '0 0 1'})

    net.populations.append(pE)
    net.populations.append(pEpoisson)
    net.populations.append(pI)

    net.synapses.append(
        Synapse(id='ampa',
                pynn_receptor_type='excitatory',
                pynn_synapse_type='curr_alpha',
                parameters={'tau_syn': 0.1}))
    net.synapses.append(
        Synapse(id='gaba',
                pynn_receptor_type='inhibitory',
                pynn_synapse_type='curr_alpha',
                parameters={'tau_syn': 0.1}))

    net.projections.append(
        Projection(id='projEinput',
                   presynaptic=pEpoisson.id,
                   postsynaptic=pE.id,
                   synapse='ampa',
                   delay=2,
                   weight=0.02,
                   one_to_one_connector=OneToOneConnector()))
    '''           
    net.projections.append(Projection(id='projEE',
                                      presynaptic=pE.id, 
                                      postsynaptic=pE.id,
                                      synapse='ampa',
                                      delay=2,
                                      weight=0.002,
                                      random_connectivity=RandomConnectivity(probability=.5)))'''

    net.projections.append(
        Projection(id='projEI',
                   presynaptic=pE.id,
                   postsynaptic=pI.id,
                   synapse='ampa',
                   delay=2,
                   weight=0.02,
                   random_connectivity=RandomConnectivity(probability=.5)))
    '''
    net.projections.append(Projection(id='projIE',
                                      presynaptic=pI.id, 
                                      postsynaptic=pE.id,
                                      synapse='gaba',
                                      delay=2,
                                      weight=0.02,
                                      random_connectivity=RandomConnectivity(probability=.5)))

    net.inputs.append(Input(id='stim',
                            input_source=input_source.id,
                            population=pE.id,
                            percentage=50))'''

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='SimExample7',
                     network=new_file,
                     duration='1000',
                     dt='0.025',
                     seed=123,
                     recordTraces={
                         pE.id: '*',
                         pI.id: '*'
                     },
                     recordSpikes={'all': '*'})

    sim.to_json_file()

    return sim, net
Esempio n. 9
0
from neuromllite import Network, Cell, InputSource, Population, Synapse, RectangularRegion, RandomLayout
from neuromllite import Projection, RandomConnectivity, Input, Simulation
import sys

################################################################################
###   Build new network

net = Network(id='Example4_PyNN')
net.notes = 'Example 4: a network with PyNN cells & inputs'
net.parameters = {'input_amp': 0.99}

cell = Cell(id='testcell', pynn_cell='IF_cond_alpha')
cell.parameters = {"tau_refrac": 5, "i_offset": .1}
net.cells.append(cell)

cell2 = Cell(id='testcell2', pynn_cell='IF_cond_alpha')
cell2.parameters = {"tau_refrac": 5, "i_offset": -.1}
net.cells.append(cell2)

input_source = InputSource(id='i_clamp',
                           pynn_input='DCSource',
                           parameters={
                               'amplitude': 'input_amp',
                               'start': 200.,
                               'stop': 800.
                           })
net.input_sources.append(input_source)

r1 = RectangularRegion(id='region1',
                       x=0,
                       y=0,
Esempio n. 10
0
from neuromllite import Network, Cell, InputSource, Population, Synapse
from neuromllite import Projection, RandomConnectivity, Input, Simulation
import sys

################################################################################
###   Build new network

net = Network(id='Spikers')
net.notes = 'Example with spiking entities..'
net.parameters = { 'N': 10, 'weightInput': 10, 'input_rate': 40}

cell = Cell(id='iafcell', pynn_cell='IF_cond_alpha')
cell.parameters = { "tau_refrac":10 }
net.cells.append(cell)

input_cell = Cell(id='InputCell', pynn_cell='SpikeSourcePoisson')
input_cell.parameters = {
    'start':    0,
    'duration': 10000000000,
     'rate':    'input_rate'
}
net.cells.append(input_cell)

input_cell_100 = Cell(id='InputCell100', pynn_cell='SpikeSourcePoisson')
input_cell_100.parameters = {
    'start':    0,
    'duration': 10000000000,
     'rate':    100
}
net.cells.append(input_cell_100)
Esempio n. 11
0
def generate():

    dt = 0.025
    simtime = 1000

    ################################################################################
    ###   Build new network

    net = Network(id='ExampleIF')
    net.notes = 'Example with IF'

    net.parameters = {
        'tauMem': 20.0,
        'tauSyn': 0.1,
        'tauRef': 2,
        'V0': -70,
        'theta': -50.0,
        'scale': 1,
        'in_weight': 0.01,
        'in_rate': 50
    }

    ifcell = Cell(id='ifcell', pynn_cell='IF_curr_alpha')

    ifcell.parameters = {
        'tau_m': 'tauMem',
        'tau_refrac': 'tauRef',
        'v_rest': 'V0',
        'v_reset': 'V0',
        'v_thresh': 'theta',
        'cm': 0.001,
        "i_offset": 0
    }

    net.cells.append(ifcell)

    poisson_input = Cell(id='poisson_input', pynn_cell='SpikeSourcePoisson')
    poisson_input.parameters = {'rate': 'in_rate', 'start': 0, 'duration': 1e9}
    net.cells.append(poisson_input)

    r1 = RectangularRegion(id='region1',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    pIF = Population(id='IFpop',
                     size='1*scale',
                     component=ifcell.id,
                     properties={
                         'color': '.9 0 0',
                         'radius': 5
                     },
                     random_layout=RandomLayout(region=r1.id))
    net.populations.append(pIF)

    pLNP = Population(id='LNPpop',
                      size='1*scale',
                      component=ifcell.id,
                      properties={
                          'color': '.9 0.9 0',
                          'radius': 5
                      },
                      random_layout=RandomLayout(region=r1.id))
    net.populations.append(pLNP)

    pEpoisson = Population(id='expoisson',
                           size='10',
                           component=poisson_input.id,
                           properties={
                               'color': '0.9 0.7 0.7',
                               'radius': 3
                           },
                           random_layout=RandomLayout(region=r1.id))

    net.populations.append(pEpoisson)

    net.synapses.append(
        Synapse(id='ampa',
                pynn_receptor_type='excitatory',
                pynn_synapse_type='curr_alpha',
                parameters={'tau_syn': 0.1}))

    net.projections.append(
        Projection(id='proj0',
                   presynaptic=pEpoisson.id,
                   postsynaptic=pIF.id,
                   synapse='ampa',
                   delay=0,
                   weight='in_weight',
                   random_connectivity=RandomConnectivity(probability=0.7)))

    net.projections.append(
        Projection(id='proj1',
                   presynaptic=pEpoisson.id,
                   postsynaptic=pLNP.id,
                   synapse='ampa',
                   delay=0,
                   weight='in_weight',
                   random_connectivity=RandomConnectivity(probability=0.7)))

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='SimExampleIF',
                     network=new_file,
                     duration=simtime,
                     dt=dt,
                     seed=123,
                     recordTraces={pIF.id: '*'},
                     recordSpikes={'all': '*'})

    sim.to_json_file()

    return sim, net
Esempio n. 12
0
def generate(ref='Example6_PyNN', add_inputs=True):

    ################################################################################
    ###   Build new network

    net = Network(id=ref,
                  notes='Another network for PyNN - work in progress...')

    net.parameters = {
        'N_scaling': 0.005,
        'layer_height': 400,
        'width': 100,
        'depth': 100,
        'input_weight': 0.1
    }

    cell = Cell(id='CorticalCell', pynn_cell='IF_curr_exp')
    cell.parameters = {
        'cm': 0.25,  # nF
        'i_offset': 0.0,  # nA
        'tau_m': 10.0,  # ms
        'tau_refrac': 2.0,  # ms
        'v_reset': -65.0,  # mV
        'v_rest': -65.0,  # mV
        'v_thresh': -50.0  # mV
    }
    net.cells.append(cell)

    if add_inputs:
        input_cell = Cell(id='InputCell', pynn_cell='SpikeSourcePoisson')
        input_cell.parameters = {
            'start': 0,
            'duration': 10000000000,
            'rate': 150
        }
        net.cells.append(input_cell)

    e_syn = Synapse(id='ampa',
                    pynn_receptor_type='excitatory',
                    pynn_synapse_type='curr_exp',
                    parameters={'tau_syn': 0.5})
    net.synapses.append(e_syn)
    i_syn = Synapse(id='gaba',
                    pynn_receptor_type='inhibitory',
                    pynn_synapse_type='curr_exp',
                    parameters={'tau_syn': 0.5})
    net.synapses.append(i_syn)

    N_full = {
        'L23': {
            'E': 20683,
            'I': 5834
        },
        'L4': {
            'E': 21915,
            'I': 5479
        },
        'L5': {
            'E': 4850,
            'I': 1065
        },
        'L6': {
            'E': 14395,
            'I': 2948
        }
    }

    scale = 0.1

    pops = []
    input_pops = []
    pop_dict = {}

    layers = ['L23']
    layers = ['L23', 'L4', 'L5', 'L6']

    for l in layers:

        i = 3 - layers.index(l)
        r = RectangularRegion(id=l,
                              x=0,
                              y=i * net.parameters['layer_height'],
                              z=0,
                              width=net.parameters['width'],
                              height=net.parameters['layer_height'],
                              depth=net.parameters['depth'])
        net.regions.append(r)

        for t in ['E', 'I']:

            try:
                import opencortex.utils.color as occ
                if l == 'L23':
                    if t == 'E': color = occ.L23_PRINCIPAL_CELL
                    if t == 'I': color = occ.L23_INTERNEURON
                if l == 'L4':
                    if t == 'E': color = occ.L4_PRINCIPAL_CELL
                    if t == 'I': color = occ.L4_INTERNEURON
                if l == 'L5':
                    if t == 'E': color = occ.L5_PRINCIPAL_CELL
                    if t == 'I': color = occ.L5_INTERNEURON
                if l == 'L6':
                    if t == 'E': color = occ.L6_PRINCIPAL_CELL
                    if t == 'I': color = occ.L6_INTERNEURON

            except:
                color = '.8 0 0' if t == 'E' else '0 0 1'

            pop_id = '%s_%s' % (l, t)
            pops.append(pop_id)
            ref = 'l%s%s' % (l[1:], t.lower())
            exec(
                ref +
                " = Population(id=pop_id, size='int(%s*N_scaling)'%N_full[l][t], component=cell.id, properties={'color':color, 'type':t})"
            )
            exec("%s.random_layout = RandomLayout(region = r.id)" % ref)
            exec("net.populations.append(%s)" % ref)
            exec("pop_dict['%s'] = %s" % (pop_id, ref))

            if add_inputs:
                color = '.8 .8 .8'
                input_id = '%s_%s_input' % (l, t)
                input_pops.append(input_id)
                input_ref = 'l%s%s_i' % (l[1:], t.lower())
                exec(
                    input_ref +
                    " = Population(id=input_id, size='int(%s*N_scaling)'%N_full[l][t], component=input_cell.id, properties={'color':color})"
                )
                exec("%s.random_layout = RandomLayout(region = r.id)" %
                     input_ref)
                exec("net.populations.append(%s)" % input_ref)

        #l23i = Population(id='L23_I', size=int(100*scale), component=cell.id, properties={'color':})
        #l23ei = Population(id='L23_E_input', size=int(100*scale), component=input_cell.id)
        #l23ii = Population(id='L23_I_input', size=int(100*scale), component=input_cell.id)

    #net.populations.append(l23e)
    #net.populations.append(l23ei)
    #net.populations.append(l23i)
    #net.populations.append(l23ii)

    conn_probs = [
        [0.1009, 0.1689, 0.0437, 0.0818, 0.0323, 0., 0.0076, 0.],
        [0.1346, 0.1371, 0.0316, 0.0515, 0.0755, 0., 0.0042, 0.],
        [0.0077, 0.0059, 0.0497, 0.135, 0.0067, 0.0003, 0.0453, 0.],
        [0.0691, 0.0029, 0.0794, 0.1597, 0.0033, 0., 0.1057, 0.],
        [0.1004, 0.0622, 0.0505, 0.0057, 0.0831, 0.3726, 0.0204, 0.],
        [0.0548, 0.0269, 0.0257, 0.0022, 0.06, 0.3158, 0.0086, 0.],
        [0.0156, 0.0066, 0.0211, 0.0166, 0.0572, 0.0197, 0.0396, 0.2252],
        [0.0364, 0.001, 0.0034, 0.0005, 0.0277, 0.008, 0.0658, 0.1443]
    ]

    if add_inputs:
        for p in pops:
            proj = Projection(id='proj_input_%s' % p,
                              presynaptic='%s_input' % p,
                              postsynaptic=p,
                              synapse=e_syn.id,
                              delay=2,
                              weight='input_weight')
            proj.one_to_one_connector = OneToOneConnector()
            net.projections.append(proj)

    for pre_i in range(len(pops)):
        for post_i in range(len(pops)):
            pre = pops[pre_i]
            post = pops[post_i]
            prob = conn_probs[post_i][pre_i]  #######   TODO: check!!!!
            weight = 1
            syn = e_syn
            if prob > 0:
                if 'I' in pre:
                    weight = -1
                    syn = i_syn
                proj = Projection(id='proj_%s_%s' % (pre, post),
                                  presynaptic=pre,
                                  postsynaptic=post,
                                  synapse=syn.id,
                                  delay=1,
                                  weight=weight)
                proj.random_connectivity = RandomConnectivity(probability=prob)
                net.projections.append(proj)

    print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    recordTraces = {}
    recordSpikes = {}

    from neuromllite.utils import evaluate
    for p in pops:
        forecast_size = evaluate(pop_dict[p].size, net.parameters)
        recordTraces[p] = list(range(min(2, forecast_size)))
        recordSpikes[p] = '*'
    for ip in input_pops:
        recordSpikes[ip] = '*'

    sim = Simulation(id='Sim%s' % net.id,
                     network=new_file,
                     duration='100',
                     dt='0.025',
                     seed=1234,
                     recordTraces=recordTraces,
                     recordSpikes=recordSpikes)

    sim.to_json_file()

    return sim, net
def generate():
    ################################################################################
    ###   Build new network

    net = Network(id='RunStims')
    net.notes = 'Example with spike producers'

    net.parameters = { 'rate':       50, 
                       'rateHz':     '50Hz', 
                       'periodms':     '20ms'}
    
    
    ssp = Cell(id='ssp', pynn_cell='SpikeSourcePoisson')
    ssp.parameters = { 'rate':       'rate',
                       'start':      0,
                       'duration':   1e9}
    net.cells.append(ssp)
    sspPop = Population(id='sspPop', size=1, component=ssp.id, properties={'color':'.5 0 0'})
    net.populations.append(sspPop)


    sg = Cell(id='sg', neuroml2_cell='SpikeGenerator')
    sg.parameters = { 'period':       'periodms'}
    net.cells.append(sg)
    sgPop = Population(id='sgPop', size=1, component=sg.id, properties={'color':'.5 0 0'})
    net.populations.append(sgPop)
    

    sgp = Cell(id='sgp', neuroml2_cell='spikeGeneratorPoisson')
    sgp.parameters = { 'average_rate':       'rateHz'}
    net.cells.append(sgp)
    sgpPop = Population(id='sgpPop', size=1, component=sgp.id, properties={'color':'.5 0 0'})
    net.populations.append(sgpPop)


    net.synapses.append(Synapse(id='ampa', 
                                pynn_receptor_type='excitatory', 
                                pynn_synapse_type='curr_alpha', 
                                parameters={'tau_syn':0.1}))
    net.synapses.append(Synapse(id='gaba', 
                                pynn_receptor_type='inhibitory', 
                                pynn_synapse_type='curr_alpha', 
                                parameters={'tau_syn':0.1}))


    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json'%net.id)


    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='SimTest',
                     network=new_file,
                     duration='10000',
                     dt='0.025',
                     seed= 123,
                     recordTraces={'xxx':'*'},
                     recordSpikes={'all':'*'})

    sim.to_json_file()
    
    return sim, net
    'bkg_rate': 9600
}

cell = Cell(id='eifcell', pynn_cell='EIF_cond_alpha_isfa_ista')

nesp = defaultParams.neuron_params_default
cell.parameters = {
    'cm': nesp['C_m'] / 1000,  # Capacitance of the membrane in nF
    'tau_refrac': nesp['t_ref'],  # Duration of refractory period in ms.
    'v_spike':
    0.0,  # Spike detection threshold in mV.   https://github.com/nest/nest-simulator/blob/master/models/aeif_cond_alpha.cpp
    'v_reset': nesp['V_reset'],  # Reset value for V_m after a spike. In mV.
    'v_rest':
    nesp['E_L'],  # Resting membrane potential (Leak reversal potential) in mV.
    'tau_m': nesp['C_m'] /
    nesp['g_L'],  # Membrane time constant in ms = cm/tau_m*1000.0, C_m/g_L
    'i_offset': nesp['I_e'] / 1000,  # Offset current in nA
    'a': 0,  # Subthreshold adaptation conductance in nS.
    'b': 0,  # Spike-triggered adaptation in nA
    'delta_T':
    2,  # Slope factor in mV. See https://github.com/nest/nest-simulator/blob/master/models/aeif_cond_alpha.cpp
    'tau_w':
    144.0,  # Adaptation time constant in ms. See https://github.com/nest/nest-simulator/blob/master/models/aeif_cond_alpha.cpp
    'v_thresh': nesp['V_th'],  # Spike initiation threshold in mV
}

net.cells.append(cell)

ssp_pre = Cell(id='ssp_pre',
               pynn_cell='SpikeSourcePoisson',
               parameters={
Esempio n. 15
0
from neuromllite import Projection, RandomConnectivity, Input, Simulation
import sys

################################################################################
###   Build new network

net = Network(id='SonataExample')
net.notes = 'Example for testing Sonata'
net.parameters = {'input_amp': 0.190, 'input_del': 100, 'input_dur': 800}

cell = Cell(id='testcell', pynn_cell='IF_cond_alpha')
cell.parameters = {
    "i_offset": 0,
    "cm": 0.117,
    "tau_m": 22.1,
    "tau_refrac": 3,
    "v_reset": -50,
    "v_rest": -78,
    "v_thresh": -47
}

net.cells.append(cell)
'''
cell2 = Cell(id='testcell2', pynn_cell='IF_cond_alpha')
cell2.parameters = { "tau_refrac":5, "i_offset":-.1 }
net.cells.append(cell2)'''

input_source = InputSource(id='i_clamp',
                           pynn_input='DCSource',
                           parameters={
                               'amplitude': 'input_amp',
Esempio n. 16
0
def generate():
    
    dt = 0.025
    simtime = 1000
    
    ################################################################################
    ###   Build new network

    net = Network(id='Example7_Brunel2000')
    net.notes = 'Example 7: based on network of Brunel 2000'
    

    net.parameters = { 'g':       4, 
                       'eta':     1, 
                       'order':   5,
                       'epsilon': 0.1,
                       'J':       0.1,
                       'delay':   1.5,
                       'tauMem':  20.0,
                       'tauSyn':  0.1,
                       'tauRef':  2.0,
                       'U0':      0.0,
                       'theta':   20.0}

    cell = Cell(id='ifcell', pynn_cell='IF_curr_alpha')


    cell.parameters = { 'tau_m':       'tauMem', 
                        'tau_refrac':  'tauRef',
                        'v_rest':      'U0',
                        'v_reset':     'U0',
                        'v_thresh':    'theta',
                        'cm':          0.001,
                        "i_offset":    0}

    #cell = Cell(id='hhcell', neuroml2_source_file='test_files/hhcell.cell.nml')
    net.cells.append(cell)

    poisson_input = Cell(id='poisson_input', pynn_cell='SpikeSourcePoisson')
    poisson_input.parameters = { 'rate':       '1000 * (eta*theta/(J*4*order*epsilon*tauMem)) * (4*order*epsilon)',
                             'start':      0,
                             'duration':   1e9}
    net.cells.append(poisson_input)

    r1 = RectangularRegion(id='region1', x=0,y=0,z=0,width=1000,height=100,depth=1000)
    net.regions.append(r1)

    pE = Population(id='Epop', 
                    size='4*order', 
                    component=cell.id, 
                    properties={'color':'.9 0 0', 'radius':5},
                    random_layout = RandomLayout(region=r1.id))
    pEpoisson = Population(id='expoisson', 
                           size='4*order', 
                           component=poisson_input.id, 
                           properties={'color':'0.9 0.7 0.7', 'radius':3},
                           random_layout = RandomLayout(region=r1.id))
    pI = Population(id='Ipop', 
                    size='1*order', 
                    component=cell.id, 
                    properties={'color':'0 0 .9', 'radius':5},
                    random_layout = RandomLayout(region=r1.id))
    pIpoisson = Population(id='inpoisson', 
                           size='1*order', 
                           component=poisson_input.id, 
                           properties={'color':'0.7 0.7 0.9', 'radius':3},
                           random_layout = RandomLayout(region=r1.id))

    net.populations.append(pE)
    net.populations.append(pEpoisson)
    net.populations.append(pI)
    net.populations.append(pIpoisson)


    net.synapses.append(Synapse(id='ampa', 
                                pynn_receptor_type='excitatory', 
                                pynn_synapse_type='curr_alpha', 
                                parameters={'tau_syn':0.1}))
                                
    net.synapses.append(Synapse(id='gaba', 
                                pynn_receptor_type='inhibitory', 
                                pynn_synapse_type='curr_alpha', 
                                parameters={'tau_syn':0.1}))

    delay_ext = dt
    
    downscale   = 1
    J_eff     = 'J*%s'%(downscale)
    # synaptic weights, scaled for alpha functions, such that
    # for constant membrane potential, charge J would be deposited
    fudge = 0.00041363506632638  # ensures dV = J at V=0
    JE = '((%s)/tauSyn)*%s'%(J_eff,fudge)
    JI = '-1*g*%s'%(JE)
    
    net.projections.append(Projection(id='projEinput',
                                      presynaptic=pEpoisson.id, 
                                      postsynaptic=pE.id,
                                      synapse='ampa',
                                      delay=delay_ext,
                                      weight=JE,
                                      one_to_one_connector=OneToOneConnector()))
    
    net.projections.append(Projection(id='projIinput',
                                      presynaptic=pIpoisson.id, 
                                      postsynaptic=pI.id,
                                      synapse='ampa',
                                      delay=delay_ext,
                                      weight=JE,
                                      one_to_one_connector=OneToOneConnector()))
                                      
           
    net.projections.append(Projection(id='projEE',
                                      presynaptic=pE.id, 
                                      postsynaptic=pE.id,
                                      synapse='ampa',
                                      delay='delay',
                                      weight=JE,
                                      random_connectivity=RandomConnectivity(probability='epsilon')))

    net.projections.append(Projection(id='projEI',
                                      presynaptic=pE.id, 
                                      postsynaptic=pI.id,
                                      synapse='ampa',
                                      delay='delay',
                                      weight=JE,
                                      random_connectivity=RandomConnectivity(probability='epsilon')))
    
    net.projections.append(Projection(id='projIE',
                                      presynaptic=pI.id, 
                                      postsynaptic=pE.id,
                                      synapse='gaba',
                                      delay='delay',
                                      weight=JI,
                                      random_connectivity=RandomConnectivity(probability='epsilon')))
                                      
    net.projections.append(Projection(id='projII',
                                      presynaptic=pI.id, 
                                      postsynaptic=pI.id,
                                      synapse='gaba',
                                      delay='delay',
                                      weight=JI,
                                      random_connectivity=RandomConnectivity(probability='epsilon')))

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json'%net.id)


    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='SimExample7',
                     network=new_file,
                     duration=simtime,
                     dt=dt,
                     seed= 123,
                     recordTraces={pE.id:[0,1],pI.id:[0,1]},
                     recordSpikes={pE.id:'*', pI.id:'*',pEpoisson.id:[0,1,2,3,4],pIpoisson.id:[0,1,2,3,4]})

    sim.to_json_file()
    
    return sim, net
Esempio n. 17
0
###################### Build the network ######################################
net = Network(id='Joglekar1Network_PyNN')
net.notes = 'Joglekar network: a network with PyNN cells & inputs'

net.parameters = {'scale': 0.01}

######################## Cell #################################################
cellE = Cell(id='excitatory', pynn_cell='IF_curr_alpha')
cellI = Cell(id='inhibitory', pynn_cell='IF_curr_alpha')

cellE.parameters = {
    "tau_m": tauE_m,
    "cm": cE_m,
    "v_rest": Vrest,
    "v_reset": Vreset,
    "v_thresh": Vt,
    "tau_refrac": tauRef,
    "i_offset": (VextE / R)
}

cellI.parameters = {
    "tau_m": tauI_m,
    "cm": cI_m,
    "v_rest": Vrest,
    "v_reset": Vreset,
    "v_thresh": Vt,
    "tau_refrac": tauRef,
    "i_offset": (VextI / R)
}
Esempio n. 18
0
def generate(ref="Example6_PyNN", add_inputs=True):

    ################################################################################
    ###   Build new network

    net = Network(id=ref, notes="Another network for PyNN - work in progress...")

    net.parameters = {
        "N_scaling": 0.005,
        "layer_height": 400,
        "width": 100,
        "depth": 100,
        "input_weight": 0.1,
    }

    cell = Cell(id="CorticalCell", pynn_cell="IF_curr_exp")
    cell.parameters = {
        "cm": 0.25,  # nF
        "i_offset": 0.0,  # nA
        "tau_m": 10.0,  # ms
        "tau_refrac": 2.0,  # ms
        "v_reset": -65.0,  # mV
        "v_rest": -65.0,  # mV
        "v_thresh": -50.0,  # mV
    }
    net.cells.append(cell)

    if add_inputs:
        input_cell = Cell(id="InputCell", pynn_cell="SpikeSourcePoisson")
        input_cell.parameters = {"start": 0, "duration": 10000000000, "rate": 150}
        net.cells.append(input_cell)

    e_syn = Synapse(
        id="ampa",
        pynn_receptor_type="excitatory",
        pynn_synapse_type="curr_exp",
        parameters={"tau_syn": 0.5},
    )
    net.synapses.append(e_syn)
    i_syn = Synapse(
        id="gaba",
        pynn_receptor_type="inhibitory",
        pynn_synapse_type="curr_exp",
        parameters={"tau_syn": 0.5},
    )
    net.synapses.append(i_syn)

    N_full = {
        "L23": {"E": 20683, "I": 5834},
        "L4": {"E": 21915, "I": 5479},
        "L5": {"E": 4850, "I": 1065},
        "L6": {"E": 14395, "I": 2948},
    }

    scale = 0.1

    pops = []
    input_pops = []
    pop_dict = {}

    layers = ["L23"]
    layers = ["L23", "L4", "L5", "L6"]

    for l in layers:

        i = 3 - layers.index(l)
        r = RectangularRegion(
            id=l,
            x=0,
            y=i * net.parameters["layer_height"],
            z=0,
            width=net.parameters["width"],
            height=net.parameters["layer_height"],
            depth=net.parameters["depth"],
        )
        net.regions.append(r)

        for t in ["E", "I"]:

            try:
                import opencortex.utils.color as occ

                if l == "L23":
                    if t == "E":
                        color = occ.L23_PRINCIPAL_CELL
                    if t == "I":
                        color = occ.L23_INTERNEURON
                if l == "L4":
                    if t == "E":
                        color = occ.L4_PRINCIPAL_CELL
                    if t == "I":
                        color = occ.L4_INTERNEURON
                if l == "L5":
                    if t == "E":
                        color = occ.L5_PRINCIPAL_CELL
                    if t == "I":
                        color = occ.L5_INTERNEURON
                if l == "L6":
                    if t == "E":
                        color = occ.L6_PRINCIPAL_CELL
                    if t == "I":
                        color = occ.L6_INTERNEURON

            except:
                color = ".8 0 0" if t == "E" else "0 0 1"

            pop_id = "%s_%s" % (l, t)
            pops.append(pop_id)
            ref = "l%s%s" % (l[1:], t.lower())
            exec(
                ref
                + " = Population(id=pop_id, size='int(%s*N_scaling)'%N_full[l][t], component=cell.id, properties={'color':color, 'type':t})"
            )
            exec("%s.random_layout = RandomLayout(region = r.id)" % ref)
            exec("net.populations.append(%s)" % ref)
            exec("pop_dict['%s'] = %s" % (pop_id, ref))

            if add_inputs:
                color = ".8 .8 .8"
                input_id = "%s_%s_input" % (l, t)
                input_pops.append(input_id)
                input_ref = "l%s%s_i" % (l[1:], t.lower())
                exec(
                    input_ref
                    + " = Population(id=input_id, size='int(%s*N_scaling)'%N_full[l][t], component=input_cell.id, properties={'color':color})"
                )
                exec("%s.random_layout = RandomLayout(region = r.id)" % input_ref)
                exec("net.populations.append(%s)" % input_ref)

        # l23i = Population(id='L23_I', size=int(100*scale), component=cell.id, properties={'color':})
        # l23ei = Population(id='L23_E_input', size=int(100*scale), component=input_cell.id)
        # l23ii = Population(id='L23_I_input', size=int(100*scale), component=input_cell.id)

    # net.populations.append(l23e)
    # net.populations.append(l23ei)
    # net.populations.append(l23i)
    # net.populations.append(l23ii)

    conn_probs = [
        [0.1009, 0.1689, 0.0437, 0.0818, 0.0323, 0.0, 0.0076, 0.0],
        [0.1346, 0.1371, 0.0316, 0.0515, 0.0755, 0.0, 0.0042, 0.0],
        [0.0077, 0.0059, 0.0497, 0.135, 0.0067, 0.0003, 0.0453, 0.0],
        [0.0691, 0.0029, 0.0794, 0.1597, 0.0033, 0.0, 0.1057, 0.0],
        [0.1004, 0.0622, 0.0505, 0.0057, 0.0831, 0.3726, 0.0204, 0.0],
        [0.0548, 0.0269, 0.0257, 0.0022, 0.06, 0.3158, 0.0086, 0.0],
        [0.0156, 0.0066, 0.0211, 0.0166, 0.0572, 0.0197, 0.0396, 0.2252],
        [0.0364, 0.001, 0.0034, 0.0005, 0.0277, 0.008, 0.0658, 0.1443],
    ]

    if add_inputs:
        for p in pops:
            proj = Projection(
                id="proj_input_%s" % p,
                presynaptic="%s_input" % p,
                postsynaptic=p,
                synapse=e_syn.id,
                delay=2,
                weight="input_weight",
            )
            proj.one_to_one_connector = OneToOneConnector()
            net.projections.append(proj)

    for pre_i in range(len(pops)):
        for post_i in range(len(pops)):
            pre = pops[pre_i]
            post = pops[post_i]
            prob = conn_probs[post_i][pre_i]  #######   TODO: check!!!!
            weight = 1
            syn = e_syn
            if prob > 0:
                if "I" in pre:
                    weight = -1
                    syn = i_syn
                proj = Projection(
                    id="proj_%s_%s" % (pre, post),
                    presynaptic=pre,
                    postsynaptic=post,
                    synapse=syn.id,
                    delay=1,
                    weight=weight,
                )
                proj.random_connectivity = RandomConnectivity(probability=prob)
                net.projections.append(proj)

    print(net.to_json())
    new_file = net.to_json_file("%s.json" % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    record_traces = {}
    record_spikes = {}

    from neuromllite.utils import evaluate

    for p in pops:
        forecast_size = evaluate(pop_dict[p].size, net.parameters)
        record_traces[p] = list(range(min(2, forecast_size)))
        record_spikes[p] = "*"
    for ip in input_pops:
        record_spikes[ip] = "*"

    sim = Simulation(
        id="Sim%s" % net.id,
        network=new_file,
        duration="100",
        dt="0.025",
        seed=1234,
        record_traces=record_traces,
        record_spikes=record_spikes,
    )

    sim.to_json_file()

    return sim, net