def compute_fig5_data(model_class=Model, δ_J_stim=(1, 1), δ_J_nmda=(1, 1), δ_J_gaba=(1, 1, 1), desc=''): """Compute the data for Figure 5.""" model = model_class(n=n, ΔA=ΔA, ΔB=ΔB, random_seed=1, δ_J_stim=δ_J_stim, δ_J_gaba=δ_J_gaba, δ_J_nmda=δ_J_nmda) filename='data/fig5_{}[{}]{}.pickle'.format(desc, n, model.desc) run_model(model, offers, history_keys=(), filename=filename)
def compute_fig4_data(model_class=Model): model = model_class(n=n, ΔA=ΔA, ΔB=ΔB, random_seed=1) filename = 'data/fig4[{}]{}.pickle'.format(n, model.desc) return run_model(model, offers, history_keys=('r_ovb', 'r_2', 'r_I'), smooth=smooth, filename=filename)
def compute_fig7_data(model_class=Model, w_p=1.82): model = model_class(n=n, ΔA=ΔA, ΔB=ΔB, random_seed=1, w_p=1.82, hysteresis=True) filename = 'data/fig7_{}[{}]{}.pickle'.format(w_p, n, model.desc) return run_model(model, offers, history_keys=('r_2', ), filename=filename)
def compute_fig4_data(model_class=Model): """Compute the Figure 4 data used in the Figure_4 notebook. If the result filename already exists, the computation will be skipped. :param model_class: set to ReplicatedModel if you want to replicate the published figures. set to Model to use the 'corrected' model, as described in the article. """ model = model_class(n=n, random_seed=1, ΔA=ΔA, ΔB=ΔB) filename='data/fig4[{}]{}.pickle'.format(n, model.desc) return run_model(model, offers, history_keys=('r_ovb', 'r_2', 'r_I'), filename=filename)
def compute_fig10_data(model_class=Model, network='symmetric'): δ_J_stim = {'symmetric': (1 , 1), 'asymmetric': (1.2, 1)}[network] model = model_class(n=n, ΔA=ΔA, ΔB=ΔB, random_seed=1, r_o=6, w_p=1.65, J_ampa_rec_in=J_ampa_rec_in, J_nmda_rec_in=J_nmda_rec_in, J_gaba_rec_in=J_gaba_rec_in, δ_J_stim=δ_J_stim) filename = 'data/fig10_{}[{}]{}.pickle'.format(network, n, model.desc) return run_model(model, offers, history_keys=('r_ovb', 'r_2', 'r_I'), filename=filename)
def compute_fig9_data(model_class, w_p=1.75, ΔJ=30): """ If the result filename already exists, the computation will be skipped. :param model_class: set to ReplicatedModel if you want to replicate the published figures. set to Model to use the 'corrected' model, as described in the article. """ model = model_class(n=n, ΔA=ΔA, ΔB=ΔB, random_seed=1, δ_J_stim=(1, 1), w_p=w_p, ΔJ=ΔJ) filename = 'data/fig9_{}_{}[{}]{}.pickle'.format(w_p, ΔJ, n, model.desc) return run_model(model, offers, history_keys=('r_1', 'r_2'), filename=filename, preprocess=False)
def compute_fig6_data(model_class, w_p): model = model_class(n=n, ΔA=ΔA, ΔB=ΔB, random_seed=1, w_p=w_p) filename = 'data/fig6_{}[{}]{}.pickle'.format(w_p, n, model.desc) return run_model(model, offers, history_keys=('r_2', 'r_I'), smooth=smooth, filename=filename)