Esempio n. 1
0
    #print allpopMUAs
    #print "\n"
    normte = np.zeros(len(popsizes))
    # For each population, obtain its MUA against all other populations
    for popnum in range(len(allpopMUAs)):
        allotherpops = copy.deepcopy(allpopMUAs)
        thispop = allotherpops.pop(
            popnum
        )  # Gives us this population, AND removes it from 'remaining' list
        thispopvec = h.Vector(thispop)  # Convert thispop to a hoc Vector

        # Now, for each 'other' population, compare it to 'thispop'
        for otherpop in allotherpops:
            # Convert otherpop to a hoc Vector
            otherpopvec = h.Vector(otherpop)
            normtevec = h.normte(thispopvec, otherpopvec,
                                 30)  # Try 30 shuffles
            #normtevec.printf("%8.4f\n")
            #print "using %f, popnum %d" % (normtevec.x[2], popnum)
            normte[popnum] += normtevec.x[2]
            #print normte
            #print "\n"

    allnormtes[runnum] = normte
    print "allnormtes"
    print allnormtes

xaxis = range(len(base_popsizes))
meanperpop = np.mean(allnormtes, axis=0)
stdperpop = np.std(allnormtes, axis=0)
print meanperpop
print stdperpop
Esempio n. 2
0
def nTE(cells1=[],
        cells2=[],
        spks1=None,
        spks2=None,
        timeRange=None,
        binSize=20,
        numShuffle=30):
    ''' 
    Calculate normalized transfer entropy
        - cells1 (['all',|'allCells','allNetStims',|,120,|,'E1'|,('L2', 56)|,('L5',[4,5,6])]): Subset of cells from which to obtain spike train 1 (default: [])
        - cells2 (['all',|'allCells','allNetStims',|,120,|,'E1'|,('L2', 56)|,('L5',[4,5,6])]): Subset of cells from which to obtain spike train 1 (default: [])
        - spks1 (list): Spike train 1; list of spike times; if omitted then obtains spikes from cells1 (default: None)
        - spks2 (list): Spike train 2; list of spike times; if omitted then obtains spikes from cells2 (default: None)
        - timeRange ([min, max]): Range of time to calculate nTE in ms (default: [0,cfg.duration])
        - binSize (int): Bin size used to convert spike times into histogram 
        - numShuffle (int): Number of times to shuffle spike train 1 to calculate TEshuffled; note: nTE = (TE - TEShuffled)/H(X2F|X2P)

        - Returns nTE (float): normalized transfer entropy 
    '''

    from neuron import h
    import netpyne
    from .. import sim
    import os

    root = os.path.dirname(netpyne.__file__)

    if 'nte' not in dir(h):
        try:
            print(
                ' Warning: support/nte.mod not compiled; attempting to compile from %s via "nrnivmodl support"'
                % (root))
            os.system('cd ' + root + '; nrnivmodl support')
            from neuron import load_mechanisms
            load_mechanisms(root)
            print(' Compilation of support folder mod files successful')
        except:
            print(' Error compiling support folder mod files')
            return

    h.load_file(root +
                '/support/nte.hoc')  # nTE code (also requires support/net.mod)

    if not spks1:  # if doesnt contain a list of spk times, obtain from cells specified
        cells, cellGids, netStimPops = getCellsInclude(cells1)
        numNetStims = 0

        # Select cells to include
        if len(cellGids) > 0:
            try:
                spkts = [
                    spkt for spkgid, spkt in zip(sim.allSimData['spkid'],
                                                 sim.allSimData['spkt'])
                    if spkgid in cellGids
                ]
            except:
                spkts = []
        else:
            spkts = []

        # Add NetStim spikes
        spkts = list(spkts)
        numNetStims = 0
        for netStimPop in netStimPops:
            if 'stims' in sim.allSimData:
                cellStims = [
                    cellStim
                    for cell, cellStim in sim.allSimData['stims'].items()
                    if netStimPop in cellStim
                ]
                if len(cellStims) > 0:
                    spktsNew = [
                        spkt for cellStim in cellStims
                        for spkt in cellStim[netStimPop]
                    ]
                    spkts.extend(spktsNew)
                    numNetStims += len(cellStims)

        spks1 = list(spkts)

    if not spks2:  # if doesnt contain a list of spk times, obtain from cells specified
        cells, cellGids, netStimPops = getCellsInclude(cells2)
        numNetStims = 0

        # Select cells to include
        if len(cellGids) > 0:
            try:
                spkts = [
                    spkt for spkgid, spkt in zip(sim.allSimData['spkid'],
                                                 sim.allSimData['spkt'])
                    if spkgid in cellGids
                ]
            except:
                spkts = []
        else:
            spkts = []

        # Add NetStim spikes
        spkts = list(spkts)
        numNetStims = 0
        for netStimPop in netStimPops:
            if 'stims' in sim.allSimData:
                cellStims = [
                    cellStim
                    for cell, cellStim in sim.allSimData['stims'].items()
                    if netStimPop in cellStim
                ]
                if len(cellStims) > 0:
                    spktsNew = [
                        spkt for cellStim in cellStims
                        for spkt in cellStim[netStimPop]
                    ]
                    spkts.extend(spktsNew)
                    numNetStims += len(cellStims)

        spks2 = list(spkts)

    # time range
    if getattr(sim, 'cfg', None):
        timeRange = [0, sim.cfg.duration]
    else:
        timeRange = [0, max(spks1 + spks2)]

    inputVec = h.Vector()
    outputVec = h.Vector()
    histo1 = np.histogram(spks1,
                          bins=np.arange(timeRange[0], timeRange[1], binSize))
    histoCount1 = histo1[0]
    histo2 = np.histogram(spks2,
                          bins=np.arange(timeRange[0], timeRange[1], binSize))
    histoCount2 = histo2[0]

    inputVec.from_python(histoCount1)
    outputVec.from_python(histoCount2)
    out = h.normte(inputVec, outputVec, numShuffle)
    TE, H, nTE, _, _ = out.to_python()
    return nTE
Esempio n. 3
0
def nTE(cells1=[],
        cells2=[],
        spks1=None,
        spks2=None,
        timeRange=None,
        binSize=20,
        numShuffle=30):
    """Calculate normalized transfer entropy.

    Parameters
    ----------
    cells1 : list
        Subset of cells from which to obtain spike train 1.
        **Default:** ``[]``
        **Options:** 
        ``['all']`` plots all cells and stimulations, 
        ``['allNetStims']`` plots just stimulations, 
        ``['popName1']`` plots a single population, 
        ``['popName1', 'popName2']`` plots multiple populations, 
        ``[120]`` plots a single cell, 
        ``[120, 130]`` plots multiple cells, 
        ``[('popName1', 56)]`` plots a cell from a specific population, 
        ``[('popName1', [0, 1]), ('popName2', [4, 5, 6])]``, plots cells from multiple populations

    cells2 : list
        Subset of cells from which to obtain spike train 2.
        **Default:** ``[]``
        **Options:** same as for `cells1`
    
    spks1 : list 
        Spike train 1; list of spike times; if omitted then obtains spikes from cells1.
        **Default:** ``None``
    
    spks2 : list 
        Spike train 2; list of spike times; if omitted then obtains spikes from cells2.
        **Default:** ``None``
    
    timeRange : list [min, max] 
        Range of time to calculate nTE in ms.
        **Default:** ``None`` uses the entire simulation time range

    binSize : int
        Bin size used to convert spike times into histogram.
        **Default:** ``20`` 
    
    numShuffle : int 
        Number of times to shuffle spike train 1 to calculate TEshuffled; note: nTE = (TE - TEShuffled)/H(X2F|X2P).
        **Default:** ``30``
    
    Returns
    -------
    float
        Normalized transfer entropy

    See Also
    --------
    granger :

    Examples
    --------
    >>> import netpyne, netpyne.examples.example
    >>> out = netpyne.analysis.nTE()
    """

    from neuron import h
    import netpyne
    from .. import sim
    import os

    root = os.path.dirname(netpyne.__file__)

    if 'nte' not in dir(h):
        try:
            print(
                ' Warning: support/nte.mod not compiled; attempting to compile from %s via "nrnivmodl support"'
                % (root))
            os.system('cd ' + root + '; nrnivmodl support')
            from neuron import load_mechanisms
            load_mechanisms(root)
            print(' Compilation of support folder mod files successful')
        except:
            print(' Error compiling support folder mod files')
            return

    h.load_file(root +
                '/support/nte.hoc')  # nTE code (also requires support/net.mod)

    if not spks1:  # if doesnt contain a list of spk times, obtain from cells specified
        cells, cellGids, netStimPops = getCellsInclude(cells1)
        numNetStims = 0

        # Select cells to include
        if len(cellGids) > 0:
            try:
                spkts = [
                    spkt for spkgid, spkt in zip(sim.allSimData['spkid'],
                                                 sim.allSimData['spkt'])
                    if spkgid in cellGids
                ]
            except:
                spkts = []
        else:
            spkts = []

        # Add NetStim spikes
        spkts = list(spkts)
        numNetStims = 0
        for netStimPop in netStimPops:
            if 'stims' in sim.allSimData:
                cellStims = [
                    cellStim
                    for cell, cellStim in sim.allSimData['stims'].items()
                    if netStimPop in cellStim
                ]
                if len(cellStims) > 0:
                    spktsNew = [
                        spkt for cellStim in cellStims
                        for spkt in cellStim[netStimPop]
                    ]
                    spkts.extend(spktsNew)
                    numNetStims += len(cellStims)

        spks1 = list(spkts)

    if not spks2:  # if doesnt contain a list of spk times, obtain from cells specified
        cells, cellGids, netStimPops = getCellsInclude(cells2)
        numNetStims = 0

        # Select cells to include
        if len(cellGids) > 0:
            try:
                spkts = [
                    spkt for spkgid, spkt in zip(sim.allSimData['spkid'],
                                                 sim.allSimData['spkt'])
                    if spkgid in cellGids
                ]
            except:
                spkts = []
        else:
            spkts = []

        # Add NetStim spikes
        spkts = list(spkts)
        numNetStims = 0
        for netStimPop in netStimPops:
            if 'stims' in sim.allSimData:
                cellStims = [
                    cellStim
                    for cell, cellStim in sim.allSimData['stims'].items()
                    if netStimPop in cellStim
                ]
                if len(cellStims) > 0:
                    spktsNew = [
                        spkt for cellStim in cellStims
                        for spkt in cellStim[netStimPop]
                    ]
                    spkts.extend(spktsNew)
                    numNetStims += len(cellStims)

        spks2 = list(spkts)

    # time range
    if getattr(sim, 'cfg', None):
        timeRange = [0, sim.cfg.duration]
    else:
        timeRange = [0, max(spks1 + spks2)]

    inputVec = h.Vector()
    outputVec = h.Vector()
    histo1 = np.histogram(spks1,
                          bins=np.arange(timeRange[0], timeRange[1], binSize))
    histoCount1 = histo1[0]
    histo2 = np.histogram(spks2,
                          bins=np.arange(timeRange[0], timeRange[1], binSize))
    histoCount2 = histo2[0]

    inputVec.from_python(histoCount1)
    outputVec.from_python(histoCount2)
    out = h.normte(inputVec, outputVec, numShuffle)
    TE, H, nTE, _, _ = out.to_python()
    return nTE
Esempio n. 4
0
def nTE(cells1=[],
        cells2=[],
        spks1=None,
        spks2=None,
        timeRange=None,
        binSize=20,
        numShuffle=30):
    """
    Function that calculates the Normalized Transfer Entropy (nTE) between two spike train signals.
    
    Transfer entropy is a model-free statistic that is able to measure 
    the time-directed transfer of information between stochastic variables
    and therefore provides an asymmetric method to measure information transfer.
    In simple words, the nTE represents the fraction of information in X explained
    by its own past which is not explained by the past of Y. 
    
    Kale, P. et al (2018, July). Normalized Transfer Entropy as a Tool to Identify Multisource 
    Functional Epileptic Networks IEEE Engineering in Medicine and Biology Society (EMBC) 
    https://doi.org/10.1109/embc.2018.8512532

    Parameters
    ----------
    cells1 : list
        Subset of cells from which to obtain spike train 1.
        **Default:** ``[]``
        **Options:**
        ``['all']`` plots all cells and stimulations,
        ``['allNetStims']`` plots just stimulations,
        ``['popName1']`` plots a single population,
        ``['popName1', 'popName2']`` plots multiple populations,
        ``[120]`` plots a single cell,
        ``[120, 130]`` plots multiple cells,
        ``[('popName1', 56)]`` plots a cell from a specific population,
        ``[('popName1', [0, 1]), ('popName2', [4, 5, 6])]``, plots cells from multiple populations

    cells2 : list
        Subset of cells from which to obtain spike train 2.
        **Default:** ``[]``
        **Options:** same as for `cells1`

    spks1 : list
        Spike train 1; list of spike times; if omitted then obtains spikes from cells1.
        **Default:** ``None``
        **Options:** ``<option>`` <description of option>

    spks2 : list
        Spike train 2; list of spike times; if omitted then obtains spikes from cells2.
        **Default:** ``None``
        **Options:** ``<option>`` <description of option>

    timeRange : list [min, max]
        Range of time to calculate nTE in ms.
        **Default:** ``None`` uses the entire simulation time range
        **Options:** ``<option>`` <description of option>

    binSize : int
        Bin size used to convert spike times into histogram.
        **Default:** ``20``
        **Options:** ``<option>`` <description of option>

    numShuffle : int
        Number of times to shuffle spike train 1 to calculate TEshuffled; note: nTE = (TE - TEShuffled)/H(X2F|X2P).
        **Default:** ``30``
        **Options:** ``<option>`` <description of option>

    Returns
    -------


"""

    from neuron import h
    import netpyne
    from .. import sim
    import os

    root = os.path.dirname(netpyne.__file__)

    if 'nte' not in dir(h):
        try:
            print(
                ' Warning: support/nte.mod not compiled; attempting to compile from %s via "nrnivmodl support"'
                % (root))
            os.system('cd ' + root + '; nrnivmodl support')
            from neuron import load_mechanisms
            load_mechanisms(root)
            print(' Compilation of support folder mod files successful')
        except:
            print(' Error compiling support folder mod files')
            return

    h.load_file(root +
                '/support/nte.hoc')  # nTE code (also requires support/net.mod)

    if not spks1:  # if doesnt contain a list of spk times, obtain from cells specified
        cells, cellGids, netStimPops = getCellsInclude(cells1)
        numNetStims = 0

        # Select cells to include
        if len(cellGids) > 0:
            try:
                spkts = [
                    spkt for spkgid, spkt in zip(sim.allSimData['spkid'],
                                                 sim.allSimData['spkt'])
                    if spkgid in cellGids
                ]
            except:
                spkts = []
        else:
            spkts = []

        # Add NetStim spikes
        spkts = list(spkts)
        numNetStims = 0
        for netStimPop in netStimPops:
            if 'stims' in sim.allSimData:
                cellStims = [
                    cellStim
                    for cell, cellStim in sim.allSimData['stims'].items()
                    if netStimPop in cellStim
                ]
                if len(cellStims) > 0:
                    spktsNew = [
                        spkt for cellStim in cellStims
                        for spkt in cellStim[netStimPop]
                    ]
                    spkts.extend(spktsNew)
                    numNetStims += len(cellStims)

        spks1 = list(spkts)

    if not spks2:  # if doesnt contain a list of spk times, obtain from cells specified
        cells, cellGids, netStimPops = getCellsInclude(cells2)
        numNetStims = 0

        # Select cells to include
        if len(cellGids) > 0:
            try:
                spkts = [
                    spkt for spkgid, spkt in zip(sim.allSimData['spkid'],
                                                 sim.allSimData['spkt'])
                    if spkgid in cellGids
                ]
            except:
                spkts = []
        else:
            spkts = []

        # Add NetStim spikes
        spkts = list(spkts)
        numNetStims = 0
        for netStimPop in netStimPops:
            if 'stims' in sim.allSimData:
                cellStims = [
                    cellStim
                    for cell, cellStim in sim.allSimData['stims'].items()
                    if netStimPop in cellStim
                ]
                if len(cellStims) > 0:
                    spktsNew = [
                        spkt for cellStim in cellStims
                        for spkt in cellStim[netStimPop]
                    ]
                    spkts.extend(spktsNew)
                    numNetStims += len(cellStims)

        spks2 = list(spkts)

    # time range
    if getattr(sim, 'cfg', None):
        timeRange = [0, sim.cfg.duration]
    else:
        timeRange = [0, max(spks1 + spks2)]

    inputVec = h.Vector()
    outputVec = h.Vector()
    histo1 = np.histogram(spks1,
                          bins=np.arange(timeRange[0], timeRange[1], binSize))
    histoCount1 = histo1[0]
    histo2 = np.histogram(spks2,
                          bins=np.arange(timeRange[0], timeRange[1], binSize))
    histoCount2 = histo2[0]

    inputVec.from_python(histoCount1)
    outputVec.from_python(histoCount2)
    out = h.normte(inputVec, outputVec, numShuffle)
    TE, H, nTE, _, _ = out.to_python()
    return nTE