def test_set_error_output_layer(self): neuron = Neuron(0, 0, [0.05, 0.05], [1, 1]) neuron.output = 0.518979 neuron.is_output_layer = True neuron.set_output_layer_error(0) self.assertEquals(-0.12955, round_to(neuron.delta_val, 5))
def _create_neurons(self, neuron_count_vec, weight_counts): neuron_count_vec_length = len(neuron_count_vec) for i in range(0, neuron_count_vec_length): self.neurons.append([]) for j in range(0, neuron_count_vec[i]): weights = Network.get_initial_neuron_weights(weight_counts[i]+1) inputs = [0] * (len(weights)-1) inputs.append(1) neuron = Neuron(i, j, weights, inputs) if i == neuron_count_vec_length-1: neuron.is_output_layer = True self.neurons[i].append(neuron)