Esempio n. 1
0
    def load_pretrained_token_embeddings(self, sess, dataset, parameters,
                                         token_to_vector=None):
        """
        """
        if parameters['token_pretrained_embedding_filepath'] == '':
            return

        # Load embeddings
        start_time = time.time()
        print('Load token embeddings... ', end='', flush=True)

        if token_to_vector == None:
            token_to_vector = utils_nlp.load_pretrained_token_embeddings(parameters)

        initial_weights = sess.run(self.token_embedding_weights.read_value())
        number_of_loaded_word_vectors = 0
        number_of_token_original_case_found = 0
        number_of_token_lowercase_found = 0
        number_of_token_digits_replaced_with_zeros_found = 0
        number_of_token_lowercase_and_digits_replaced_with_zeros_found = 0

        for token in dataset.token_to_index.keys():
            if token in token_to_vector.keys():
                initial_weights[dataset.token_to_index[token]] = token_to_vector[token]
                number_of_token_original_case_found += 1
            elif parameters['check_for_lowercase'] and token.lower() in token_to_vector.keys():
                initial_weights[dataset.token_to_index[token]] = token_to_vector[token.lower()]
                number_of_token_lowercase_found += 1
            elif parameters['check_for_digits_replaced_with_zeros'] and re.sub(r'\d',
                                                                               '0', token) in token_to_vector.keys():
                initial_weights[dataset.token_to_index[token]] = token_to_vector[re.sub(r'\d',
                                                                                        '0', token)]
                number_of_token_digits_replaced_with_zeros_found += 1
            elif parameters['check_for_lowercase'] and parameters['check_for_digits_replaced_with_zeros'] \
                    and re.sub('\d', '0', token.lower()) in token_to_vector.keys():
                initial_weights[dataset.token_to_index[token]] = token_to_vector[re.sub(r'\d',
                                                                                        '0', token.lower())]
                number_of_token_lowercase_and_digits_replaced_with_zeros_found += 1
            else:
                continue
            number_of_loaded_word_vectors += 1
        elapsed_time = time.time() - start_time

        print('done ({0:.2f} seconds)'.format(elapsed_time))
        print("number_of_token_original_case_found: {0}".format(number_of_token_original_case_found))
        print("number_of_token_lowercase_found: {0}".format(number_of_token_lowercase_found))
        print("number_of_token_digits_replaced_with_zeros_found: {0}".format(
            number_of_token_digits_replaced_with_zeros_found))
        print("number_of_token_lowercase_and_digits_replaced_with_zeros_found: {0}".format(
            number_of_token_lowercase_and_digits_replaced_with_zeros_found))
        print('number_of_loaded_word_vectors: {0}'.format(number_of_loaded_word_vectors))
        print("dataset.vocabulary_size: {0}".format(dataset.vocabulary_size))
        sess.run(self.token_embedding_weights.assign(initial_weights))
Esempio n. 2
0
    def load_dataset(self,
                     dataset_filepaths,
                     parameters,
                     token_to_vector=None):
        '''
        dataset_filepaths : dictionary with keys 'train', 'valid', 'test', 'deploy'
        '''
        start_time = time.time()
        print('Load dataset... ', end='', flush=True)
        if parameters['token_pretrained_embedding_filepath'] != '':
            if token_to_vector == None:
                token_to_vector = utils_nlp.load_pretrained_token_embeddings(
                    parameters)
        else:
            token_to_vector = {}
        if self.verbose:
            print("len(token_to_vector): {0}".format(len(token_to_vector)))

        # Load pretraining dataset to ensure that index to label is compatible to the pretrained model,
        #   and that token embeddings that are learned in the pretrained model are loaded properly.
        all_tokens_in_pretraining_dataset = []
        all_characters_in_pretraining_dataset = []
        if parameters['use_pretrained_model']:
            try:
                pretraining_dataset = pickle.load(
                    open(
                        os.path.join(parameters['pretrained_model_folder'],
                                     'dataset.pickle'), 'rb'))
            except:
                pretraining_dataset = utils.renamed_load(
                    open(
                        os.path.join(parameters['pretrained_model_folder'],
                                     'dataset.pickle'), 'rb'))
            all_tokens_in_pretraining_dataset = pretraining_dataset.index_to_token.values(
            )
            all_characters_in_pretraining_dataset = pretraining_dataset.index_to_character.values(
            )

        remap_to_unk_count_threshold = 1
        self.UNK_TOKEN_INDEX = 0
        self.PADDING_CHARACTER_INDEX = 0
        self.tokens_mapped_to_unk = []
        self.UNK = 'UNK'
        self.unique_labels = []
        labels = {}
        tokens = {}
        label_count = {}
        token_count = {}
        character_count = {}
        for dataset_type in ['train', 'valid', 'test', 'deploy']:
            labels[dataset_type], tokens[dataset_type], token_count[dataset_type], label_count[dataset_type], character_count[dataset_type] \
                = self._parse_dataset(dataset_filepaths.get(dataset_type, None))

            if self.verbose:
                print("dataset_type: {0}".format(dataset_type))
            if self.verbose:
                print("len(token_count[dataset_type]): {0}".format(
                    len(token_count[dataset_type])))

        token_count['all'] = {}
        for token in list(token_count['train'].keys()) + list(
                token_count['valid'].keys()) + list(
                    token_count['test'].keys()) + list(
                        token_count['deploy'].keys()):
            token_count['all'][token] = token_count['train'][
                token] + token_count['valid'][token] + token_count['test'][
                    token] + token_count['deploy'][token]

        if parameters['load_all_pretrained_token_embeddings']:
            for token in token_to_vector:
                if token not in token_count['all']:
                    token_count['all'][token] = -1
                    token_count['train'][token] = -1
            for token in all_tokens_in_pretraining_dataset:
                if token not in token_count['all']:
                    token_count['all'][token] = -1
                    token_count['train'][token] = -1

        character_count['all'] = {}
        for character in list(character_count['train'].keys()) + list(
                character_count['valid'].keys()) + list(
                    character_count['test'].keys()) + list(
                        character_count['deploy'].keys()):
            character_count['all'][character] = character_count['train'][
                character] + character_count['valid'][
                    character] + character_count['test'][
                        character] + character_count['deploy'][character]

        for character in all_characters_in_pretraining_dataset:
            if character not in character_count['all']:
                character_count['all'][character] = -1
                character_count['train'][character] = -1

        for dataset_type in dataset_filepaths.keys():
            if self.verbose: print("dataset_type: {0}".format(dataset_type))
            if self.verbose:
                print("len(token_count[dataset_type]): {0}".format(
                    len(token_count[dataset_type])))

        label_count['all'] = {}
        for character in list(label_count['train'].keys()) + list(
                label_count['valid'].keys()) + list(
                    label_count['test'].keys()) + list(
                        label_count['deploy'].keys()):
            label_count['all'][character] = label_count['train'][
                character] + label_count['valid'][character] + label_count[
                    'test'][character] + label_count['deploy'][character]

        token_count['all'] = utils.order_dictionary(token_count['all'],
                                                    'value_key',
                                                    reverse=True)
        label_count['all'] = utils.order_dictionary(label_count['all'],
                                                    'key',
                                                    reverse=False)
        character_count['all'] = utils.order_dictionary(character_count['all'],
                                                        'value',
                                                        reverse=True)
        if self.verbose:
            print('character_count[\'all\']: {0}'.format(
                character_count['all']))

        token_to_index = {}
        token_to_index[self.UNK] = self.UNK_TOKEN_INDEX
        iteration_number = 0
        number_of_unknown_tokens = 0
        if self.verbose:
            print("parameters['remap_unknown_tokens_to_unk']: {0}".format(
                parameters['remap_unknown_tokens_to_unk']))
        if self.verbose:
            print("len(token_count['train'].keys()): {0}".format(
                len(token_count['train'].keys())))
        for token, count in token_count['all'].items():
            if iteration_number == self.UNK_TOKEN_INDEX: iteration_number += 1

            if parameters['remap_unknown_tokens_to_unk'] == 1 and \
                (token_count['train'][token] == 0 or \
                parameters['load_only_pretrained_token_embeddings']) and \
                not utils_nlp.is_token_in_pretrained_embeddings(token, token_to_vector, parameters) and \
                token not in all_tokens_in_pretraining_dataset:
                if self.verbose:
                    print("token: {0}".format(token))
                if self.verbose:
                    print("token.lower(): {0}".format(token.lower()))
                if self.verbose:
                    print("re.sub('\d', '0', token.lower()): {0}".format(
                        re.sub('\d', '0', token.lower())))
                token_to_index[token] = self.UNK_TOKEN_INDEX
                number_of_unknown_tokens += 1
                self.tokens_mapped_to_unk.append(token)
            else:
                token_to_index[token] = iteration_number
                iteration_number += 1
        if self.verbose:
            print("number_of_unknown_tokens: {0}".format(
                number_of_unknown_tokens))

        infrequent_token_indices = []
        for token, count in token_count['train'].items():
            if 0 < count <= remap_to_unk_count_threshold:
                infrequent_token_indices.append(token_to_index[token])
        if self.verbose:
            print("len(token_count['train']): {0}".format(
                len(token_count['train'])))
        if self.verbose:
            print("len(infrequent_token_indices): {0}".format(
                len(infrequent_token_indices)))

        # Ensure that both B- and I- versions exist for each label
        labels_without_bio = set()
        for label in label_count['all'].keys():
            new_label = utils_nlp.remove_bio_from_label_name(label)
            labels_without_bio.add(new_label)
        for label in labels_without_bio:
            if label == 'O':
                continue
            if parameters['tagging_format'] == 'bioes':
                prefixes = ['B-', 'I-', 'E-', 'S-']
            else:
                prefixes = ['B-', 'I-']
            for prefix in prefixes:
                l = prefix + label
                if l not in label_count['all']:
                    label_count['all'][l] = 0
        label_count['all'] = utils.order_dictionary(label_count['all'],
                                                    'key',
                                                    reverse=False)

        if parameters['use_pretrained_model']:
            self.unique_labels = sorted(
                list(pretraining_dataset.label_to_index.keys()))
            # Make sure labels are compatible with the pretraining dataset.
            for label in label_count['all']:
                if label not in pretraining_dataset.label_to_index:
                    raise AssertionError(
                        "The label {0} does not exist in the pretraining dataset. "
                        .format(label) +
                        "Please ensure that only the following labels exist in the dataset: {0}"
                        .format(', '.join(self.unique_labels)))
            label_to_index = pretraining_dataset.label_to_index.copy()
        else:
            label_to_index = {}
            iteration_number = 0
            for label, count in label_count['all'].items():
                label_to_index[label] = iteration_number
                iteration_number += 1
                self.unique_labels.append(label)

        if self.verbose:
            print('self.unique_labels: {0}'.format(self.unique_labels))

        character_to_index = {}
        iteration_number = 0
        for character, count in character_count['all'].items():
            if iteration_number == self.PADDING_CHARACTER_INDEX:
                iteration_number += 1
            character_to_index[character] = iteration_number
            iteration_number += 1

        if self.verbose:
            print('token_count[\'train\'][0:10]: {0}'.format(
                list(token_count['train'].items())[0:10]))
        token_to_index = utils.order_dictionary(token_to_index,
                                                'value',
                                                reverse=False)
        if self.verbose:
            print('token_to_index: {0}'.format(token_to_index))
        index_to_token = utils.reverse_dictionary(token_to_index)
        if parameters['remap_unknown_tokens_to_unk'] == 1:
            index_to_token[self.UNK_TOKEN_INDEX] = self.UNK
        if self.verbose:
            print('index_to_token: {0}'.format(index_to_token))

        if self.verbose:
            print('label_count[\'train\']: {0}'.format(label_count['train']))
        label_to_index = utils.order_dictionary(label_to_index,
                                                'value',
                                                reverse=False)
        if self.verbose:
            print('label_to_index: {0}'.format(label_to_index))
        index_to_label = utils.reverse_dictionary(label_to_index)
        if self.verbose:
            print('index_to_label: {0}'.format(index_to_label))

        character_to_index = utils.order_dictionary(character_to_index,
                                                    'value',
                                                    reverse=False)
        index_to_character = utils.reverse_dictionary(character_to_index)
        if self.verbose:
            print('character_to_index: {0}'.format(character_to_index))
        if self.verbose:
            print('index_to_character: {0}'.format(index_to_character))

        if self.verbose:
            print('labels[\'train\'][0:10]: {0}'.format(labels['train'][0:10]))
        if self.verbose:
            print('tokens[\'train\'][0:10]: {0}'.format(tokens['train'][0:10]))

        if self.verbose:
            # Print sequences of length 1 in train set
            for token_sequence, label_sequence in zip(tokens['train'],
                                                      labels['train']):
                if len(label_sequence) == 1 and label_sequence[0] != 'O':
                    print("{0}\t{1}".format(token_sequence[0],
                                            label_sequence[0]))

        self.token_to_index = token_to_index
        self.index_to_token = index_to_token
        self.index_to_character = index_to_character
        self.character_to_index = character_to_index
        self.index_to_label = index_to_label
        self.label_to_index = label_to_index
        if self.verbose:
            print("len(self.token_to_index): {0}".format(
                len(self.token_to_index)))
        if self.verbose:
            print("len(self.index_to_token): {0}".format(
                len(self.index_to_token)))
        self.tokens = tokens
        self.labels = labels

        token_indices, label_indices, character_indices_padded, character_indices, token_lengths, characters, label_vector_indices = self._convert_to_indices(
            dataset_filepaths.keys())

        self.token_indices = token_indices
        self.label_indices = label_indices
        self.character_indices_padded = character_indices_padded
        self.character_indices = character_indices
        self.token_lengths = token_lengths
        self.characters = characters
        self.label_vector_indices = label_vector_indices

        self.number_of_classes = max(self.index_to_label.keys()) + 1
        self.vocabulary_size = max(self.index_to_token.keys()) + 1
        self.alphabet_size = max(self.index_to_character.keys()) + 1
        if self.verbose:
            print("self.number_of_classes: {0}".format(self.number_of_classes))
        if self.verbose:
            print("self.alphabet_size: {0}".format(self.alphabet_size))
        if self.verbose:
            print("self.vocabulary_size: {0}".format(self.vocabulary_size))

        # unique_labels_of_interest is used to compute F1-scores.
        self.unique_labels_of_interest = list(self.unique_labels)
        self.unique_labels_of_interest.remove('O')

        self.unique_label_indices_of_interest = []
        for lab in self.unique_labels_of_interest:
            self.unique_label_indices_of_interest.append(label_to_index[lab])

        self.infrequent_token_indices = infrequent_token_indices

        if self.verbose:
            print('self.unique_labels_of_interest: {0}'.format(
                self.unique_labels_of_interest))
        if self.verbose:
            print('self.unique_label_indices_of_interest: {0}'.format(
                self.unique_label_indices_of_interest))

        elapsed_time = time.time() - start_time
        print('done ({0:.2f} seconds)'.format(elapsed_time))

        return token_to_vector