def __init__(self, dim, name=None, mix=5): """Initialize mixture density layer - mix gives the number of Gaussians to mix, dim is the dimension of the target(!) vector.""" nUnits = mix * (dim + 2) # mean vec + stddev and mixing coeff NeuronLayer.__init__(self, nUnits, name) self.nGaussians = mix self.nDims = dim
def __init__(self, dim, name = None, mix=5): """Initialize mixture density layer - mix gives the number of Gaussians to mix, dim is the dimension of the target(!) vector.""" nUnits = mix * (dim + 2) # mean vec + stddev and mixing coeff NeuronLayer.__init__(self, nUnits, name) self.nGaussians = mix self.nDims = dim
def __init__(self, dim, name=None): NeuronLayer.__init__(self, dim, name) # initialize sigmas to 0 ParameterContainer.__init__(self, dim, stdParams = 0) # if autoalpha is set to True, alpha_sigma = alpha_mu = alpha*sigma^2 self.autoalpha = False self.enabled = True
def __init__(self, dim, module, name=None, onesigma=True): NeuronLayer.__init__(self, dim, name) self.exploration = zeros(dim, float) self.state = None self.onesigma = onesigma if self.onesigma: # one single parameter: sigma ParameterContainer.__init__(self, 1) else: # sigmas for all parameters in the exploration module ParameterContainer.__init__(self, module.paramdim) # a module for the exploration assert module.outdim == dim, ( "Passed module does not have right dimension") self.module = module self.autoalpha = False self.enabled = True